In Vivo Experiment of Tissue-Engineered Artificial Vessel

조직공학적 인조혈관의 생체 내 이식 실험

  • 임상현 (연세대학교 의과대학 흉부외과학교실) ;
  • 조승우 (서울대학교 응용화학부) ;
  • 홍유선 (연세대학교 의과대학 흉부외과학교실) ;
  • 김병수 (한양대학교 공과대학 응용화학공학부) ;
  • 유경종 (연세대학교 의과대학 흉부외과학교실) ;
  • 장병철 (연세대학교 의과대학 흉부외과학교실) ;
  • 최차용 (서울대학교 응용화학부)
  • Published : 2004.03.01

Abstract

The number of patients with coronary artery disease and peripheral vascular disease are increasing, and the need of small diameter vessel is also increasing. We developed small diameter artificial vessel and experimented in vivo. We got allogenic valve from mongrel dogs, and removed all cells from the allogenic valve. Then, we seeded autologous bone marrow cells onto the decellularized scaffold. After implantation of artificial vessel into the canine carotid artery, we performed angiography regularly. In case of vessel occlusion or at 8 weeks after operation, we euthanized dogs, and retrieved the implanted artificial vessels. Control vessels were all occluded except one (which developed aneurysmal dilatation). But autologous cell seeded vascular graft were patent by 4 weeks in one, by 6 in one and by 8 weeks in two. Histologic examination of patent vessel revealed similar structure to native artery. Tissue-engineered vascular graft manufactured with decellularized allogenic matrix and autologous bone marrow cells showed that tissue engineered graft had similar structure to native artery.

관상동맥 질환과 말초혈관 질환의 증가에 따라 직경 6 mm 이하의 소구경 혈관의 필요성이 증가하고 있다. 저자들은 조직공학적 방법을 이용하여 소구경 인공혈관을 제작하여 생체 실험을 시행하였다. 동종 판막을 얻어 이를 탈세포화시킨 후 피실험동물의 골수를 채취하여 탈세포화시킨 혈관용 지지체(scaffold) 위에 이식하였다. 이와 같이 하여 제작된 인공 혈관을 잡견의 양측 경동맥에 이식한 후 혈관이 막히거나, 8주가 되었을 때 이를 제거하여 조직학적 검사를 시행하였다. 자가 세포를 이식하지 않고 지지체만을 이식하였던 대조군 4마리 중 3마리의 혈관은 2주 이내에 모두 막힌 것을 확인하였고 나머지 한 마리의 혈관은 혈관류(aneurysm)가 발생하였다. 그러나 자가 세포를 이식한 실험군 4마리 중 2마리는 각각 4주와 6주까지 혈관의 개통성을 유지하였고, 나머지 2마리는 8주까지 혈관의 개통성을 유지하였다. 조직학적 검사 결과, 8주까지 개통성을 유지하였던 혈관은 정상의 혈관과 거의 유사한 조직학적 구조를 나타내었다. 자가 세포와 탈세포화된 지지체를 이용하여 제작한 인공혈관은 조직학적 검사 결과 정상과 유사한 구조로 재생이 가능함을 보여주었다.

Keywords

References

  1. J Thorac Cardiovas Surg v.121 The fate of a tissue engineered cardiac graft in the ventricular outflow tract of the rat Sakai,T.;Li,P.K.;Weisel,R.D.(et al.) https://doi.org/10.1067/mtc.2001.113600
  2. Biomaterials v.20 Endothelial cell adherence to small intestinal submucosa: an acellular bioscafford Badylak,S.;Liang,A.;Record,R.;Tullius,R.;Hodde,J. https://doi.org/10.1016/S0142-9612(99)00156-8
  3. Eur J Vasc Endovasc Surg v.18 Fat and bone marrow-impregnated small diameter PTFE grafts Freechette,E.;dion,Y.M.;Cardon,A.;Chakfe,N.;Doillon,C.J. https://doi.org/10.1053/ejvs.1999.0877
  4. J Thorac Cardiovasc Surg v.4 Aorta-coronary bypass grafting with polytetrafluroethylene conduits Early and late outcome in eight patients Chard,R.B.;Johnson,D.C.;Nunn,G.R.;Cartmil,T.B.
  5. Biomaterials v.19 Manufacture of porous biodegradable polymer conduits by an extrasion process for guided tissue regeneration Widmer,M.;Guputa,P.K.;La,G.(et al.) https://doi.org/10.1016/S0142-9612(98)00099-4
  6. Science v.284 Functional arteries grown in vitro Nikdason,L.E.;Gao,J.;Abbott,W.M.(et al.) https://doi.org/10.1126/science.284.5413.489
  7. Eur J Cardiothorac Surg v.13 Tissue engineering: A new approach in cardiovascular surgery; Seeding of human fibroblasts followed by human endothelial cells on resorbable mesh Zund,G.;Hoestrup,S.P.;Schoeberlein,A.(et al.) https://doi.org/10.1016/S1010-7940(97)00309-6
  8. Blood v.95 Enhanced endothelialization and microvessel formation in polyester grafts seeded with CD $34^+$bone marrow cells Bhattachaya,V.;Mcsweeney,P.A.;Shi,Q.(et al.)
  9. Nature Med v.7 Functional small-diameter neovessels created using endothelial rogenitor cells expanded ex vivo Kaushal,S.;Amiel,G.E.;Guleserian,K.J.(et al.) https://doi.org/10.1038/nm0901-1035
  10. Surgery v.126 Clinical autologous in vitro endothelialization of infrain-guinal ePIFE grafts in 100 patients: A 9-year experience Deutsch,M.;Meinhart,J.;Fischlein,T.;Preiss,P.;Zilla,P. https://doi.org/10.1016/S0039-6060(99)70025-5
  11. J Thorac Cardiovasc Surg v.120 Clinical experience with autologous endothelial cell-seeded polytetrafluoro-ethylene coronary artery bypass grafts laqube,H.R.;Duwe,J.;Rutsch,W.;Konetz,W. https://doi.org/10.1067/mtc.2000.106327
  12. Am Thorac Surg v.68 Tissue engineering of autologous aorta using a new biodegadable polymer Tim,D.S.;Stock,U.;Hrkach,J.(et al.) https://doi.org/10.1016/S0003-4975(99)01055-3
  13. American Heart Association 2002 Heart and Stroke Statistical Update American Heart Association
  14. N Engl J Med v.336 Use of cardiac procedure and outcomes in elderly patients with mycardial infartion in th United States and Canada Tu,J.V.;Pashos,C.L.;Nayloret,C.D.(et al.) https://doi.org/10.1056/NEJM199705223362106
  15. Br J Surg v.85 Long-term result of femorotibial bypass with vein or polytetrafluroethylene Sayers,R.D.;Raptis,S.;Berce,M.;Miller,J.H. https://doi.org/10.1046/j.1365-2168.1998.00765.x
  16. J vasc Surg v.3 Six-year prospective multicenter randomized comparison of autologous saphenous vein and expanded poly-tetrafluroethlylene graft in infrainguinal arterial reconstrcution Veith,F.J. https://doi.org/10.1067/mva.1986.avs0030104
  17. Circ Res v.85 Novel vascular graft grown within recipient's own peritonel cavity Campbell,J.H.;Efendy,J.L.;Campbell,G.R. https://doi.org/10.1161/01.RES.85.12.1173
  18. Blood v.92 Evidence for circulating bone-marrow-derived endothelial cells Shi,Q.;Rafii,S.;Wijelath,E.S.(et al.)
  19. Nature Med v.7 Host bone-marrow cells are a source of donor-intimal smooth muscle-like cells in murine aortic transplant arteriopathy Shimizu,K. https://doi.org/10.1038/89121