• 제목/요약/키워드: Varying modal characteristics

검색결과 21건 처리시간 0.024초

초고층건물의 성능평가를 위한 응답의존 시스템판별 및 모델향상 (Output-Only System Identification and Model Updating for Performance Evaluation of Tall Buildings)

  • 조순호
    • 한국지진공학회논문집
    • /
    • 제12권4호
    • /
    • pp.19-33
    • /
    • 2008
  • 구조물에 고유한 진동수,모드형태 및 감쇠비 등과 같은 동적성능치를 추출하기 위하여 25층 및 42층 건물에 대하여 자연진동에 의한 동적계측실험을 수행하였다. 고려된 건물은 주요 횡하중 지지기구로서 코아벽체 혹은 전단벽체가 추가된 철근콘크리트건물이며, 입면 혹은 평면상으로 골조가 혼합된 구조형식을 나타낸다. 특히, 25층 건물은 측면에 위치한 코아벽체 이외에 상부로부터 내려오는 전단벽 구조가 4층 바닥이하에서 골조형식으로 전환되는 복잡한 구조이다. 이와 같은 이유 및 건물 주방향의 유사한 강성배치로 매우 근접하고 혼합된 모드형태가 예상되어 시스템판별 시 어려움이 예상된다. 현재까지 개발된 다양한 시스템판별법을 대상건물의 자연진동 실측기록에 적용하여 모달계수를 유도하였으며, 그 결과를 비교 분석하였다. 3개의 주파수영역 및 4개의 시간영역에 근거한 응답의존 시스템판별법이 고려되었다. 서로 다른 시스템판별법에 의하여 추출된 고유진동수 및 감쇠비는 대체로 상당한 일치를 보였으나, 모드형태는 사용된 방법에 따라 정도가 다르게 불일치를 나타냈다. 실험으로부터 추출한 성능치와 초기 유한요소해석 값을 비교해 본 결과 대상건물 모두 적어도 저차 3개의 고유진동수에서 2배 정도의 차이를 나타냈다. 실험과 해석결과의 일치를 위하여 몇몇 수동모델향상이 시도되었으며, 허용할 만한 결과를 획득하였다. 사용된 시스템판별법에 대하여 각자의 장, 단점에 대하여 기술하였으며, 본 연구와 같은 실제 대형구조물에 대하여 자동모델향상기법을 적용할 시 예상되는 문제점에 대하여 토의하였다.

적층내 탄성 유도초음파의 모드 특성에 관한 연구 (A Study on Elastic Guided Wave Modal Characteristics in Multi-Layered Structures)

  • 조윤호;이종명
    • 비파괴검사학회지
    • /
    • 제28권2호
    • /
    • pp.211-216
    • /
    • 2008
  • 이 연구에서 다층구조물에서 각 모드에 대한 위상속도, 군속도, 감쇠 그리고 파형구조를 구하는 프로그램을 개발하였다. 판의 수와 재료 물성치를 변화시키면서 각 모드의 파형구조를 얻었다. 유체가 닿아 있는 구조물에서 유도파를 이용한 비파괴 검사의 성공여부는 에너지 손실을 최소화하는 모드선정의 최적화이다. 이 연구에서는 자유표면판재의 표면에서 정규화된 두께방향의 변위가 감쇠의 변화를 예측하기 위해서 사용되었으며 감쇠와 파형구조의 관계를 밝혔다. 이것은 유도파의 감쇠를 물이 닿아 있는 경우 복소수근을 찾는 수학적 어려움을 경감하면서 자유표면에서 두께방향 변위의 변화로부터 손쉽게 얻을 수 있다. 이 연구를 통하여 다층구조물에서 보다 민감하고 효율적인 비파괴 검사를 위한 유도파의 모드선정의 최적화 개념을 완성했다.

한국 남부지방에 서식하는 다묵장어 Lampetra reissneri (Agnatha)의 형태적 연구 (Morphological study of brook lamprey, Lampetra reissneri (Agnatha) from Southern Korea)

  • 심재환
    • 한국어류학회지
    • /
    • 제2권2호
    • /
    • pp.149-158
    • /
    • 1990
  • 1989년 9월부터 4월 사이에 전북 남원군(낙동강지류)과 경남 하동군(섬진강)에서 채집된 총 95개체의 다묵장어 Lampetra reissneri에서 유생이 21개체, 변태중인 개체가 16개체 그리고 성체는 58개체로서 모두 체장이 200mm이하였다. 몸통의 근절수는 55개에서 60개 사이였으며 modal number는 57.5개였다. 또한 성체의 치식(dental formula)에서 상구치판은 2첨두, 내측순치는 좌우 양측에 각각 3개씩으로 모두 2첨두를 가지고 있으며, 하구치판에는 6개에서 8개의 첨두로 되어져서 이들은 Lampetra속으로 동정되어졌다. 성체의 계측형질에서 체장에 대한 전새공길이는 10.3%, 새공길이 9.7%, 몸통길이 51.3%, 꼬리길이 28.3%를 차지하고 있었으며 두 집단간의 그리고 성간의 유의한 차이는 볼 수 없었다.

  • PDF

네 가지 음향 홀로그래피의 특성 및 오차 (Characteristics and Errors of Four Acoustic Holographies)

  • 김시문;김양한
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.950-967
    • /
    • 1995
  • Acoustic holography makes it possible to reconstruct the acoustic field based on the measurement of the pressure distribution on the hologram surface. Because of the merit that one can obtain an entire three-dimensional wave field from the data recorded on a two-dimensional surface, the holographic method has been widely studied. Being an experimental method, holography has an unavoidable error which is generate by sampling in space and frequency domain and finite aperture size. Its magnitude is dependent on the space and frequency domain and finite aperture size. Its magnitude is dependent on the shape of hologram surface, acoustic holography may be classified into four types of holography : rectangular type planeholography, circular type plane holography, cylindrical holography and spherical holography. In this paper, four types of holography are studied by modal summation method. Numerical simulation is performed using a monopole source with varying parameters to find out effects to the estimation error in each holography. Experiments of circular type plane holography and cylindrical holography explain strong relation between the shape of hologram surface and the acoustic field.

영구자석 스핀들 모터의 코깅토크가 회전디스크 굽힘 진동의 안정성에 미치는 영향 (Effects of Torque Fluctuation on the Stability of the Transverse Vibration of a Spinning Disk)

  • 이기녕;신응수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.942-947
    • /
    • 2001
  • This paper provides a stability analysis of the transverse vibration of a spinning disk under the torque fluctuation from a permanent magnetic motor. An analytical model has been formulated for a flexible annular disk with its spinning velocity varying harmonically with the same frequency as the cogging torque. A perturbation method based on multiple time scales is applied to perform the stability analysis. Based on expressions for the amplitude and frequency of the parametric excitation, stability boundaries are determined in terms of a nominal spindle velocity, the least common multiple of poles and slots, the magnitude of torque fluctuation and the modal characteristics of. the disk. The stability diagrams predicted by perturbation have been verified numerically using the Floquet theory, which is in good agreement. In conclusion, the fluctuation in spinning velocity is found to affect the stability of the transverse vibration of a rotating disks. The results of this work can be applied to high precision spindle systems such as computer storage systems.

  • PDF

속도변동성분을 갖는 회전디스크의 횡진동 안정성 해석 (Stability Analysis of Transverse Vibration of a Spinning Disk with Speed Fluctuation)

  • 신응수;이기녕;신태명;김옥현
    • 한국소음진동공학회논문집
    • /
    • 제12권1호
    • /
    • pp.21-28
    • /
    • 2002
  • This paper intends to investigate the effects of speed fluctuation caused by the cogging torque in permanent magnetic motors on the stability of the transverse vibration for a spinning disk. Based on the Kirchhoff\`s plate theory and the assumed mode methods, a set of discretized equations of motion were derived for an annular disk rotating with a harmonically varying speed. Then, a perturbation method using the multiple time scales was employed and stability boundaries were determined explicitly in terms of the magnitude and frequency of speed fluctuation, a nominal sped and the modal characteristics of the disk. It is found that parametric resonance occurs at several speed ranges and a single mode or a combination of two modes are involved to cause instability. It is also observed that unstable regions become broadened as the spinning speed increases or two modes are combined in parametric instability. As numerical simulations, stability analysis of a conventional CD-ROM drive was performed. Results of this work can e used as guidelines for motor design and operations with low vibration.

정하중을 받는 승용차 타이어의 진동특성에 관한 연구 (A study on vibration characteristics of passenger car tire under the static load)

  • 문일동;이태근;홍동표;김병삼
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.14-22
    • /
    • 1995
  • We treat the vibrations of circular beam and make use of the method employed by J.T.Tielking, which is based on the principle of Hamilton. The Hamilton's principle requires the determinations of the potential and the kinetic energy of the model as well as done by internal pressure forces. Thje potential energy is composed of a part due to elastic deformations of the beam and a part due to radial and tangential displacements of the tread band with respect to the wheel rim. The equations of motion for such a model are derived by reference to conventional energy method. The accuracy of the expressions is demonstrated by comparison of calculated and experimental natural frequencies for circular beam. The circular beam experiences a harmonic, radial excitat- ion acting at a fixed point on the beam. Modal parameters varying the inflation pressure and load are determined experimentally by using the transfer function method.

  • PDF

Dynamic characteristics of multiple inerter-based dampers for suppressing harmonically forced oscillations

  • Chen, Huating;Jia, Shaomin;He, Xuefeng
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.747-762
    • /
    • 2019
  • Based on the ball-screw mechanism, a tuned viscous mass damper (TVMD) has been proposed, which has functions of amplifying physical mass of the system and frequency tuning. Considering the sensitivity of a single TVMD's effectiveness to frequency mistuning like that of the conventional tuned mass damper (TMD) and according to the concept of the conventional multiple tuned mass damper (MTMD), in the present paper, multiple tuned mass viscous dampers (MTVMD) consisting of many tuned mass dampers (TVMD) with a uniform distribution of natural frequencies are considered for attenuating undesirable vibration of a structure. The MTVMD is manufactured by keeping the stiffness and damping constant and varying the mass associated with the lead of the ball-screw type inerter element in the damper. The structure is represented by its mode-generalized system in a specific vibration mode controlled using the mode reduced-order method. Modal properties and fundamental characteristics of the MTVMD-structure system are investigated analytically with the parameters, i.e., the frequency band, the average damping ratio, the tuning frequency ratio, the total number of TVMD and the total mass ratio. It is found that there exists an optimum set of the parameters that makes the frequency response curve of the structure flattened with smaller amplitudes in a wider input frequency range. The effectiveness and robustness of the MTVMD are also discussed in comparison with those of the usual single TVMD (STVMD) and the results shows that the MTVMD is more effective and robust with the same level of total mass.

Near-elliptic Core Triangular-lattice and Square-lattice PCFs: A Comparison of Birefringence, Cut-off and GVD Characteristics Towards Fiber Device Application

  • Maji, Partha Sona;Chaudhuri, Partha Roy
    • Journal of the Optical Society of Korea
    • /
    • 제18권3호
    • /
    • pp.207-216
    • /
    • 2014
  • In this work, we report detailed numerical analysis of the near-elliptic core index-guiding triangular-lattice and square-lattice photonic crystal fiber (PCFs); where we numerically characterize the birefringence, single mode, cut-off behavior and group velocity dispersion and effective area properties. By varying geometry and examining the modal field profile we find that for the same relative values of $d/{\Lambda}$, triangular-lattice PCFs show higher birefringence whereas the square-lattice PCFs show a wider range of single-mode operation. Square-lattice PCF was found to be endlessly single-mode for higher air-filling fraction ($d/{\Lambda}$). Dispersion comparison between the two structures reveal that we need smaller lengths of triangular-lattice PCF for dispersion compensation whereas PCFs with square-lattice with nearer relative dispersion slope (RDS) can better compensate the broadband dispersion. Square-lattice PCFs show zero dispersion wavelength (ZDW) red-shifted, making it preferable for mid-IR supercontinuum generation (SCG) with highly non-linear chalcogenide material. Square-lattice PCFs show higher dispersion slope that leads to compression of the broadband, thus accumulating more power in the pulse. On the other hand, triangular-lattice PCF with flat dispersion profile can generate broader SCG. Square-lattice PCF with low Group Velocity Dispersion (GVD) at the anomalous dispersion corresponds to higher dispersion length ($L_D$) and higher degree of solitonic interaction. The effective area of square-lattice PCF is always greater than its triangular-lattice counterpart making it better suited for high power applications. We have also performed a comparison of the dispersion properties of between the symmetric-core and asymmetric-core triangular-lattice PCF. While we need smaller length of symmetric-core PCF for dispersion compensation, broadband dispersion compensation can be performed with asymmetric-core PCF. Mid-Infrared (IR) SCG can be better performed with asymmetric core PCF with compressed and high power pulse, while wider range of SCG can be performed with symmetric core PCF. Thus, this study will be extremely useful for designing/realizing fiber towards a custom application around these characteristics.

Structural Optimization of Cantilever Beam in Conjunction with Dynamic Analysis

  • Zai, Behzad Ahmed;Park, M.K.;Lim, Seung-Chul;Lee, Joong-Won;Sindhu, Rashid Ali
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.397-401
    • /
    • 2008
  • Knowledge of dynamic characteristics of structural elements often can make difference between success and failure in the design of structure due to resonance effect. In this paper an analytical model of a cantilever beam having midpoint load is considered for structural optimization. This involves creating the geometry which allows parametric study of all design variables. For that purpose optimization of cantilever beam is elaborated in order to find the optimum geometry which minimizes its volume eventually for minimum weight using ANSYS. But such geometry could be obtained by different combinations of width and height, so that it may have the same cross sectional area yet different dynamic behavior. So for optimum safe design, besides minimum volume it should have minimum vibration as well. In order to predict vibration different dynamic analyses are performed simultaneously to solve the eigenvalues problem assuming no damping initially through MATLAB simulations using state space form for modal analysis, which identifies the resonant frequencies and mode shapes belonging to the lowest three modes of vibration. And next by introducing damping effects tip displacement, bending stress and the vertical reaction force at the fixed end is evaluated under some dynamic load of varying frequency, and finally it is discussed how resonance can be avoided for particular design. Investigation of results clearly shows that only structural analysis is not enough to predict the optimum values of dimension for safe design. Potentially this technique will meet maintenance and cost goals of many organizations particularly for the application where dynamic loading is invertible and helps a lot ensuring that the proposed design will be safe for both static and dynamic conditions.

  • PDF