• Title/Summary/Keyword: Varshni coefficients

Search Result 6, Processing Time 0.019 seconds

Surface Photovoltage Characterization of In0.49Ga0.51P/GaAs Heterostructures (In0.49Ga0.51P/GaAs 이종접합 구조의 표면 광전압 특성)

  • Kim, Jeong-Hwa;Kim, In-Soo;Bae, In-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.353-359
    • /
    • 2010
  • We report the surface photovoltage (SPV) properties of $In_{0.49}Ga_{0.51}P$/GaAs heterostructure grown by metal-organic chemical vapour deposition (MOCVD). The SPV measurements were studied as a function of modulation beam intensity, modulation frequency and temperature. From a line shape analysis of room temperature derivative surface photovoltage (DSPV) spectrum, the band gap energies for GaAs and $In_{0.49}Ga_{0.51}P$ transitions were 1.400 and 1.893 eV respectively. The surface photovoltage (SPV) increases with increasing the light intensity and temperature, whereas the SPV decreases with increasing the modulation frequency. From the temperature variation of the energy gaps, we have analysis by both Varshni and Bose-Einstein type expressions.

Free exciton transitions and Varshni′s coeffecients for GaN epitaxial layers grown by horizontal LP - MOCVD

  • Lee, Joo-in;Leem, Jae-Young;Son, J.S.;Viswanath, A. Kasi
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.3
    • /
    • pp.63-67
    • /
    • 2000
  • We have studied the photoluminescence properties of undoped epitaxial layers of GaN on sapphire substrate grown by horizontal low pressure metal organic chemical vapor deposition method in the temperature range of 9-300 K. At 9 K the spectra are dominated by the well resolved interband free excitons A and B as well as bound excitons. Temperature dependence of free exciton transitions was studied and Varshni's coefficients for the temperature variation of bandgap were determined.

  • PDF

Contactless Electroreflectance Spectroscopy of In0.5(Ga1-xAlx)0.5P/GaAs Double Heterostructures (In0.5(Ga1-xAlx)0.5P/GaAs 이중 이종접합 구조의 Contactless Electroreflectance에 관한 연구)

  • Kim, Jeong-Hwa;Jo, Hyun-Jun;Bae, In-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.134-140
    • /
    • 2010
  • We have investigated the contactless electroreflectance (CER) properties of $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P$/GaAs double heterostructures grown by metal-organic chemical vapour deposition (MOCVD). The CER measurements on the sample were studied as a function of temperature, modulation voltage ($V_{ac}$), and dc bias voltage ($V_{bias}$). Five signals observed at room temperature are related to the GaAs, $In_{0.5}Ga_{0.5}P$, $In_{0.5}(Ga_{0.73}Al_{0.27})_{0.5}P$, $In_{0.5}(Ga_{0.5}Al_{0.5})_{0.5}P$, and $In_{0.5}(Ga_{0.2}Al_{0.8})_{0.5}P$ transitions, respectively. From the temperature dependence of CER spectrum, the Varshni coefficients and broadening parameters were determined and discussed. In addition, we found that the behavior of the CER amplitude for the reverse bias is larger than that of the forward.

A Study of Characteristics of lnxGa1-xP by Photoreflectance measurement (Photoreflectance 측정에 의한 InxGa1-xP의 특성 연구)

  • Kim D. L.;Yu J. I.
    • Laser Solutions
    • /
    • v.8 no.3
    • /
    • pp.5-10
    • /
    • 2005
  • [ $InxGa_{1-x}P/GaAs$ ] structures were grown by chemical beam epitaxy(CBE), Pure phosphine($PH_3$) gases were used as group V sources. for the group III sources, TEGa, TmIn were used. $InxGa_{1-x}P$ epilayer was grown on SI-GaAs substrate and has a 1-${\mu}m$ thick. We have investigated the characteristics of $InxGa_{1-x}P$ by the photoreflectance(PR) spectroscopy, The PR spectrum of $InxGa_{1-x}P$ shows third-derivative feature whose Peaks Provide energy gap. The energy gap of $InxGa_{1-x}P$ has deduced composition x. From temperature dependance of PR spectra, temperature coefficient is $dEg/dT=-3.773{\times}10^{-4}$ eV/K, and Varshni coefficients $\alpha$ and $\beta$ values obtained $4{\times}10^4$ eV/K and 267 K respectively. Also, interaction $\alpha$B was 19.4 meV using the Bose-Einstein temperature relation, and $\Theta$ value related the average phonon frequency were 101.4 K. In particular, shoulder peak related to defects observed in PR signal that measured in temperature 82 K.

  • PDF

A study on surface photovoltage characteristics of $IN_{0.03}Ga_{0.97}AS/GaAs$ epilayer ($IN_{0.03}Ga_{0.97}AS/GaAs$에피층의 표면 광전압 특성에 관한 연구)

  • 최상수;김기홍;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.81-86
    • /
    • 2001
  • We have investigated surface photovoltage characteristics of InGaAs grown by metalorganic chemical vapor deposition (MOCVD) method on semi-insulating GaAs. The splitted SPV signals from the substrate and epilayer were observed. The band gap energy of InGaAs was about 1.376 eV, The In composition(x) was determined by Pan's composition formula. The photovoltage gradually decreases with increasing frequency. This is because the transfer of charge from the surface states reduces. From the temperature dependent SPV measurement, we obtained Varshni and temperature coefficients. In spectrum of etched sample at 300 K, the 'A' peak below $E_o(GaAs)$ is related with residual impurity during sample growth.

  • PDF

A study on characteristics of $In_xGa_{1-x}As(0.03\leqx\leq0.11)$ epilayer by photoreflectance measuerment (Photoreflectance 측정에 의한 $In_xGa_{1-x}As(0.03\leqx\leq0.11)$ 에피층의 특성 연구)

  • 김인수;손정식;이철욱;배인호;임재영;한병국;신영남
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.334-340
    • /
    • 1998
  • Photoreflectance (PR) measurents have been performed on $In_xGa_{1-x}As/GaAs$ grown by molecular beam epitaxy (MBE). Bandgap $(E_0)$ of $In_xGa_{1-x}As$ epilayer measured from PR was separated as heavy-hole $(E_0(HH))$ and light-hole $(E_0(LH))$ by strain effect. The compositions and the strains of epilayer were obtained from the energy value of $E_0(HH)$ and from energy difference of $E_0(HH)$ and $E_0(LH)$, respectively. In addition, the PR signal of $E_0(LH)$ was diminished below 160 K. The interface electric field (E) of InGaAs/GaAs was increased from $0.75{\times}10^5$ V/cm to $2.66{\times}10^5$ V/cm as In composition increased, which was calculated from Franz-Keldysh oscillation (FKO) peaks. As the temperature dependence of the PR signal at x=0.09 sample, we obtained Varshni and Bose-Einstein coefficients.

  • PDF