DOI QR코드

DOI QR Code

Surface Photovoltage Characterization of In0.49Ga0.51P/GaAs Heterostructures

In0.49Ga0.51P/GaAs 이종접합 구조의 표면 광전압 특성

  • Kim, Jeong-Hwa (Department of Physics, Yeungnam University) ;
  • Kim, In-Soo (Department of Material and Energy Engineering, Kyungwoon University) ;
  • Bae, In-Ho (Department of Physics, Yeungnam University)
  • 김정화 (영남대학교 물리학과) ;
  • 김인수 (경운대학교 신소재에너지학과) ;
  • 배인호 (영남대학교 물리학과)
  • Received : 2010.06.16
  • Accepted : 2010.09.16
  • Published : 2010.09.30

Abstract

We report the surface photovoltage (SPV) properties of $In_{0.49}Ga_{0.51}P$/GaAs heterostructure grown by metal-organic chemical vapour deposition (MOCVD). The SPV measurements were studied as a function of modulation beam intensity, modulation frequency and temperature. From a line shape analysis of room temperature derivative surface photovoltage (DSPV) spectrum, the band gap energies for GaAs and $In_{0.49}Ga_{0.51}P$ transitions were 1.400 and 1.893 eV respectively. The surface photovoltage (SPV) increases with increasing the light intensity and temperature, whereas the SPV decreases with increasing the modulation frequency. From the temperature variation of the energy gaps, we have analysis by both Varshni and Bose-Einstein type expressions.

Metal-organic chemical vapour deposition (MOCVD) 법으로 성장된 $In_{0.49}Ga_{0.51}P$/GaAs 이종접합 구조의 특성을 표면 광전압(surface photovoltage; SPV) 분광법으로 조사하였다. SPV 측정은 입사광의 세기, 변조 주파수, 온도의 함수로 수행하였다. 상온에서 시료의 띠간격 에너지(band gap energy)는 GaAs와 $In_{0.49}Ga_{0.51}P$는 각각 1.400 및 1.893 eV이었다. 광세기를 증가시킴에 따라 SPV 크기는 증가하는 반면에, 변조 주파수를 증가시킴에 따라 SPV 크기는 감소하였다. 그리고 SPV 스펙트럼의 온도 의존성으로부터 GaAs와 $In_{0.49}Ga_{0.51}P$의 띠간격 에너지의 변화를 Varshni 및 Bose-Einstein 표현에 의해 분석하였다.

Keywords

References

  1. J. B. Lee, I. Kim, H. K. Kwon, and B. D. Choe, Appl. Phys. Lett. 62, 1620 (1993). https://doi.org/10.1063/1.108605
  2. L. B. Chang, K. Y. Cheng, and C. C. Liu, Jpn. J. Appl. Phys. 27, 1145 (1988). https://doi.org/10.1143/JJAP.27.1145
  3. H. Kroemer, J. Vac. Sci. Techol. B1(2), 126 (1983).
  4. S. L. Jang, Solid State Electronics 34, 373 (1991). https://doi.org/10.1016/0038-1101(91)90166-V
  5. S. A Tabatabaei, A. A Iliadis, E. C. Colin, and E. C. Wood, J. Electronics Materials 24, 87 (1995). https://doi.org/10.1007/BF02659627
  6. G. Attolini, C. Bocchi, F. Germini, C. Pelosi, A. Parisini, L. Tarricone, R. Kùdela, and S. Hasenohrl, Materials Chemistry and Physics 66, 246 (2000). https://doi.org/10.1016/S0254-0584(00)00319-9
  7. X. Z. Shang, P. J. Niu, B. N. Mao, W. X. Wang, L. W. Guo, Q. Huang, and J. M. Zhou, Solid State Communications 138, 114 (2006). https://doi.org/10.1016/j.ssc.2006.02.025
  8. M. Begotti, M. Longo, R. Magnanini, A. Parisini, L. Tarricone, C. Bocchi, F. Germini, L. Lazzarini, L. Nasi, and M. Geddo, Applied Surface Science 222, 423 (2004). https://doi.org/10.1016/j.apsusc.2003.09.011
  9. M. Murtagh, J. T. Beechinor, N. Cordero, P. V. Kelly, G. M. Crean, and S. W. Bland, Materials Science and Engineering B66, 185 (1999). https://doi.org/10.1016/S0921-5107(99)00088-4
  10. S. Datta, A. Bhattacharya, M. R. Gokhale, S. P. Pai, J. John, and B. M. Arora, Journal of Crystal Growth 241, 115 (2002). https://doi.org/10.1016/S0022-0248(02)01207-1
  11. J. Lagowski, W. Walukiewicz, M. M. G. Slusarczuk, and H. C. Gatos, J. Appl. Phys. 50, 5059 (1979). https://doi.org/10.1063/1.325610
  12. 유재인, 김도균, 김근형, 배인호, 김인수, 한병국, 한국진공학회 9, 116 (2000).
  13. J. S. Roberts, G. B. Scott, and J. P, Growers. J. Appl. Phys. 52, 4018 (1981). https://doi.org/10.1063/1.329211
  14. W. Liu, D. Jiang, and Y. Zhang, J. Appl. Phys. 77, 4564 (1995). https://doi.org/10.1063/1.359419
  15. L. Kronik and Y. Shapira, Surface Science Reports 37, 1, (1999) https://doi.org/10.1016/S0167-5729(99)00002-3
  16. Y. P. Varshni, Physica 34, 149 (1967). https://doi.org/10.1016/0031-8914(67)90062-6
  17. L. Pevesi, F. Piazze, A. Rudra, J. F. Carlin, and M. Hegema, Phys. Rev. B 44, 9052 (1991). https://doi.org/10.1103/PhysRevB.44.9052
  18. C. Mejia-Garcia, A. Caballero-Rosas, M. Lopez- Lopez, A. Winter, H. Pascher, and J. L. Lopez- Lopez, Thin Solid Films 518, 1825 (2010). https://doi.org/10.1016/j.tsf.2009.09.041
  19. 김정화, 조현준, 배인호, 한국진공학회지 19, 134 (2010).
  20. T. Prutskij, C. Pelosi, and R. A. Brito-Ort, Microelectronics Journal 36, 374 (2005). https://doi.org/10.1016/j.mejo.2005.02.056
  21. P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, Phys. Rev. B 35, 9174 (1987). https://doi.org/10.1103/PhysRevB.35.9174

Cited by

  1. Suppression of Switching Noise in a Quantum Device Based on GaAs/AlxGa1-xAs Two Dimensional Electron Gas System vol.21, pp.3, 2012, https://doi.org/10.5757/JKVS.2012.21.3.151