Browse > Article
http://dx.doi.org/10.5757/JKVS.2010.19.5.353

Surface Photovoltage Characterization of In0.49Ga0.51P/GaAs Heterostructures  

Kim, Jeong-Hwa (Department of Physics, Yeungnam University)
Kim, In-Soo (Department of Material and Energy Engineering, Kyungwoon University)
Bae, In-Ho (Department of Physics, Yeungnam University)
Publication Information
Journal of the Korean Vacuum Society / v.19, no.5, 2010 , pp. 353-359 More about this Journal
Abstract
We report the surface photovoltage (SPV) properties of $In_{0.49}Ga_{0.51}P$/GaAs heterostructure grown by metal-organic chemical vapour deposition (MOCVD). The SPV measurements were studied as a function of modulation beam intensity, modulation frequency and temperature. From a line shape analysis of room temperature derivative surface photovoltage (DSPV) spectrum, the band gap energies for GaAs and $In_{0.49}Ga_{0.51}P$ transitions were 1.400 and 1.893 eV respectively. The surface photovoltage (SPV) increases with increasing the light intensity and temperature, whereas the SPV decreases with increasing the modulation frequency. From the temperature variation of the energy gaps, we have analysis by both Varshni and Bose-Einstein type expressions.
Keywords
$In_{0.49}Ga_{0.51}P$/GaAs heterostructure; SPV; Varshni coefficients; Bose-Einstein parameters;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 L. Kronik and Y. Shapira, Surface Science Reports 37, 1, (1999)   DOI
2 Y. P. Varshni, Physica 34, 149 (1967).   DOI
3 L. Pevesi, F. Piazze, A. Rudra, J. F. Carlin, and M. Hegema, Phys. Rev. B 44, 9052 (1991).   DOI
4 C. Mejia-Garcia, A. Caballero-Rosas, M. Lopez- Lopez, A. Winter, H. Pascher, and J. L. Lopez- Lopez, Thin Solid Films 518, 1825 (2010).   DOI
5 김정화, 조현준, 배인호, 한국진공학회지 19, 134 (2010).   과학기술학회마을
6 T. Prutskij, C. Pelosi, and R. A. Brito-Ort, Microelectronics Journal 36, 374 (2005).   DOI
7 P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, Phys. Rev. B 35, 9174 (1987).   DOI
8 J. B. Lee, I. Kim, H. K. Kwon, and B. D. Choe, Appl. Phys. Lett. 62, 1620 (1993).   DOI
9 L. B. Chang, K. Y. Cheng, and C. C. Liu, Jpn. J. Appl. Phys. 27, 1145 (1988).   DOI
10 H. Kroemer, J. Vac. Sci. Techol. B1(2), 126 (1983).
11 S. L. Jang, Solid State Electronics 34, 373 (1991).   DOI
12 S. A Tabatabaei, A. A Iliadis, E. C. Colin, and E. C. Wood, J. Electronics Materials 24, 87 (1995).   DOI
13 G. Attolini, C. Bocchi, F. Germini, C. Pelosi, A. Parisini, L. Tarricone, R. Kùdela, and S. Hasenohrl, Materials Chemistry and Physics 66, 246 (2000).   DOI
14 X. Z. Shang, P. J. Niu, B. N. Mao, W. X. Wang, L. W. Guo, Q. Huang, and J. M. Zhou, Solid State Communications 138, 114 (2006).   DOI
15 M. Begotti, M. Longo, R. Magnanini, A. Parisini, L. Tarricone, C. Bocchi, F. Germini, L. Lazzarini, L. Nasi, and M. Geddo, Applied Surface Science 222, 423 (2004).   DOI
16 M. Murtagh, J. T. Beechinor, N. Cordero, P. V. Kelly, G. M. Crean, and S. W. Bland, Materials Science and Engineering B66, 185 (1999).   DOI
17 S. Datta, A. Bhattacharya, M. R. Gokhale, S. P. Pai, J. John, and B. M. Arora, Journal of Crystal Growth 241, 115 (2002).   DOI
18 J. S. Roberts, G. B. Scott, and J. P, Growers. J. Appl. Phys. 52, 4018 (1981).   DOI
19 J. Lagowski, W. Walukiewicz, M. M. G. Slusarczuk, and H. C. Gatos, J. Appl. Phys. 50, 5059 (1979).   DOI
20 유재인, 김도균, 김근형, 배인호, 김인수, 한병국, 한국진공학회 9, 116 (2000).
21 W. Liu, D. Jiang, and Y. Zhang, J. Appl. Phys. 77, 4564 (1995).   DOI