• Title/Summary/Keyword: Variable Statistics

Search Result 1,353, Processing Time 0.023 seconds

A Stagewise Approach to Structural Equation Modeling (구조식 모형에 대한 단계적 접근)

  • Lee, Bora;Park, Changsoon
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.1
    • /
    • pp.61-74
    • /
    • 2015
  • Structural equation modeling (SEM) is a widely used in social sciences such as education, business administration, and psychology. In SEM, the latent variable score is the estimate of the latent variable which cannot be observed directly. This study uses stagewise structural equation modeling(stagewise SEM; SSEM) by partitioning the whole model into several stages. The traditional estimation method minimizes the discrepancy function using the variance-covariance of all observed variables. This method can lead to inappropriate situations where exogenous latent variables may be affected by endogenous latent variables. The SSEM approach can avoid such situations and reduce the complexity of the whole SEM in estimating parameters.

On Distribution of Order Statistics from Kumaraswamy Distribution

  • Garg, Mridula
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.411-417
    • /
    • 2008
  • In the present paper we derive the distribution of single order statistics, joint distribution of two order statistics and the distribution of product and quotient of two order statistics when the independent random variables are from continuous Kumaraswamy distribution. In particular the distribution of product and quotient of extreme order statistics and consecutive order statistics have also been obtained. The method used is based on Mellin transform and its inverse.

Cutpoint Selection via Penalization in Credit Scoring (신용평점화에서 벌점화를 이용한 절단값 선택)

  • Jin, Seul-Ki;Kim, Kwang-Rae;Park, Chang-Yi
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.2
    • /
    • pp.261-267
    • /
    • 2012
  • In constructing a credit scorecard, each characteristic variable is divided into a few attributes; subsequently, weights are assigned to those attributes in a process called coarse classification. While partitioning a characteristic variable into attributes, one should determine appropriate cutpoints for the partition. In this paper, we propose a cutpoint selection method via penalization. In addition, we compare the performances of the proposed method with classification spline machine (Koo et al., 2009) on both simulated and real credit data.

Linear profile monitoring with random covariate (설명변수가 랜덤인 성형 프로파일 연구)

  • Kim, Daeun;Lee, Sungim;Lim, Johan
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.335-346
    • /
    • 2022
  • Profile control chart aims to detect a change in the functional relationship of multivariate characteristics in the statistical process control. In monitoring two variables, a linear profile is of interest composed of the intercept and slope of one variable (response variable) against the other (explanatory variable). The previous studies on monitoring of the linear profile mostly assume that the explanatory variables are the same for all profiles. However, there are also cases where they vary depending on profiles. This paper intends to extend the monitoring method to where explanatory variables are different for each profile. We compare the new method's performance through simulation and apply it to monitoring a network intrusion using NSL-KDD data.

Assessing bioequivalence for highly variable drugs based on 3×3 crossover designs (고변동성 제제의 생물학적 동등성 평가에서 3×3 교차설계법 연구)

  • Park, Ji-Ae;Park, Sang-Gue
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.2
    • /
    • pp.279-289
    • /
    • 2016
  • Bioequivalence trials based on higher order crossover designs have recently been conducted for highly variable drugs since the Ministry of Korea Food and Drug Safety (MFDS) added new regulations in 2013 to widen bioequivalence limits for highly variable drugs. However, a statistical discussion of higher order crossover designs have not been discussed yet. This research proposes the statistical inference of bioequivalence based on $3{\times}3$ crossover design and discusses it with the MFDS regulations. An illustrated example is also given.

Validation Comparison of Credit Rating Models Using Box-Cox Transformation

  • Hong, Chong-Sun;Choi, Jeong-Min
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.3
    • /
    • pp.789-800
    • /
    • 2008
  • Current credit evaluation models based on financial data make use of smoothing estimated default ratios which are transformed from each financial variable. In this work, some problems of the credit evaluation models developed by financial experts are discussed and we propose improved credit evaluation models based on the stepwise variable selection method and Box-Cox transformed data whose distribution is much skewed to the right. After comparing goodness-of-fit tests of these models, the validation of the credit evaluation models using statistical methods such as the stepwise variable selection method and Box-Cox transformation function is explained.

  • PDF

Estimation and variable selection in censored regression model with smoothly clipped absolute deviation penalty

  • Shim, Jooyong;Bae, Jongsig;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1653-1660
    • /
    • 2016
  • Smoothly clipped absolute deviation (SCAD) penalty is known to satisfy the desirable properties for penalty functions like as unbiasedness, sparsity and continuity. In this paper, we deal with the regression function estimation and variable selection based on SCAD penalized censored regression model. We use the local linear approximation and the iteratively reweighted least squares algorithm to solve SCAD penalized log likelihood function. The proposed method provides an efficient method for variable selection and regression function estimation. The generalized cross validation function is presented for the model selection. Applications of the proposed method are illustrated through the simulated and a real example.

Variable Selection with Nonconcave Penalty Function on Reduced-Rank Regression

  • Jung, Sang Yong;Park, Chongsun
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.1
    • /
    • pp.41-54
    • /
    • 2015
  • In this article, we propose nonconcave penalties on a reduced-rank regression model to select variables and estimate coefficients simultaneously. We apply HARD (hard thresholding) and SCAD (smoothly clipped absolute deviation) symmetric penalty functions with singularities at the origin, and bounded by a constant to reduce bias. In our simulation study and real data analysis, the new method is compared with an existing variable selection method using $L_1$ penalty that exhibits competitive performance in prediction and variable selection. Instead of using only one type of penalty function, we use two or three penalty functions simultaneously and take advantages of various types of penalty functions together to select relevant predictors and estimation to improve the overall performance of model fitting.

Independence test of a continuous random variable and a discrete random variable

  • Yang, Jinyoung;Kim, Mijeong
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.285-299
    • /
    • 2020
  • In many cases, we are interested in identifying independence between variables. For continuous random variables, correlation coefficients are often used to describe the relationship between variables; however, correlation does not imply independence. For finite discrete random variables, we can use the Pearson chi-square test to find independency. For the mixed type of continuous and discrete random variables, we do not have a general type of independent test. In this study, we develop a independence test of a continuous random variable and a discrete random variable without assuming a specific distribution using kernel density estimation. We provide some statistical criteria to test independence under some special settings and apply the proposed independence test to Pima Indian diabetes data. Through simulations, we calculate false positive rates and true positive rates to compare the proposed test and Kolmogorov-Smirnov test.

A convenient approach for penalty parameter selection in robust lasso regression

  • Kim, Jongyoung;Lee, Seokho
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.651-662
    • /
    • 2017
  • We propose an alternative procedure to select penalty parameter in $L_1$ penalized robust regression. This procedure is based on marginalization of prior distribution over the penalty parameter. Thus, resulting objective function does not include the penalty parameter due to marginalizing it out. In addition, its estimating algorithm automatically chooses a penalty parameter using the previous estimate of regression coefficients. The proposed approach bypasses cross validation as well as saves computing time. Variable-wise penalization also performs best in prediction and variable selection perspectives. Numerical studies using simulation data demonstrate the performance of our proposals. The proposed methods are applied to Boston housing data. Through simulation study and real data application we demonstrate that our proposals are competitive to or much better than cross-validation in prediction, variable selection, and computing time perspectives.