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Abstract
In many cases, we are interested in identifying independence between variables. For continuous

random variables, correlation coefficients are often used to describe the relationship between variables;
however, correlation does not imply independence. For finite discrete random variables, we can use
the Pearson chi-square test to find independency. For the mixed type of continuous and discrete
random variables, we do not have a general type of independent test. In this study, we develop a
independence test of a continuous random variable and a discrete random variable without assuming
a specific distribution using kernel density estimation. We provide some statistical criteria to test
independence under some special settings and apply the proposed independence test to Pima Indian
diabetes data. Through simulations, we calculate false positive rates and true positive rates to
compare the proposed test and Kolmogorov-Smirnov test.
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1. Introduction
We have been interested in identifying relationships among some variables in a data set.
In particular, in epidemiology and social studies, researchers focus on finding a causal re-
lationship of which variable leads to a particular result. A covariance and various kinds
of correlation coefficients can be measurement tools to capture a linear relationship of two
random variables, but those do not give information on causation. A regression method is
mostly used to find relationships among variables; however, it implies associations and not
the causal relationships between variables. Pearl et al. (2016) also stresses that “correlation
is not causation” and suggests researchers do a different approach from finding a correlation
or a regression model to identify a causal relationship among variables properly. In a causal
inference study, a graph consisted of vertices and edges is used to describe causal relation-
ship among variables effectively. Each variable is represented as a vertex and a relationship
between variables is represented through an edge. If two variables are dependent then two
vertices corresponding to those variables are connected through an edge. If not, those are not
connected. In order to draw a graph to reflect causations among variables, Bayesian networks
have been introduced. For a Bayesian network learning, an independence test is carried out
in the first step of constraint-based causal structure learning such as PC algorithm (Spirtes
et al., 2000).
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For all discrete random variables, log-likelihood ratio G2 or Pearson’s X2 can be applicable
to identify independency among variables. In the case of paired continuous variables, t-test for
Pearson correlation coefficients are used to validate independency among variables under the
assumption of the linearity of those variables. We briefly review the test methods in Section
2. For more independence test methods, refer Table 4.1 and Table 4.2 in Scutari and Denis
(2014). When continuous variables and discrete variables are mixed in data sets, R package
‘deal’ can be used to find the dependence structure globally through a Hill-Climbing algorithm
under the assumption that the conditional continuous distribution is normal (Russell and
Norvig, 2003; Scutari and Denis, 2014). The Hill-Climbing algorithm finds the structure of
variables which have the highest score; however, it does not give us the local independence
test results. In this paper, we propose a nonparametric method to test the independency of
mixed variables of discrete and continuous variables without assuming a specific conditional
distribution. The null hypothesis for the proposed test is similar to that of Kolmogorov-
Smirnov test. After introducing our methods in Section 3, then we will compare our test
and Kolmogorov-Smirnov test in Section 4. In Section 5, we apply our methods to real data.
In Section 6, we present conclusions and directions for future research. In Appendix, some
useful R functions are provided.

2. Existing independence tests
Definition 1. (Independence of random variables) Random variables X and Y are in-
dependent if for all x and y,

FX,Y (x, y) = FX(x)FY (y),

where FX,Y , FX , and FY are cumulative distribution functions.

If X and Y are both discrete, The above equation is equivalent to

pX,Y (x, y) = pX(x)pY (y), for all x and y,

where pX,Y , pX , and pY are probability mass functions.
If X and Y are both continuous, The above equation is equivalent to

fX,Y (x, y) = fX(x)fY (y), for all x and y,

where fX,Y , fX , and fY are probability distribution functions.

2.1. Independence test for finite discrete variables
In the following contingency table of X and Y , let πij be the joint probability for X = xi

and Y = yj , for i = 1, . . . , I and j = 1, . . . , J .
Y

y1 y2 . . . yJ
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Then the expected frequency µij can be estimated as µ̂ij = ni+n+j/n.
If πij = πi+π+j for all i = 1, . . . , I and j = 1, . . . , J , then X and Y are independent. In

order to test independency of X and Y , we can set the following hypothesis test.

H0 : πij = πi+π+j for all i and j, H1 : Not H0.

For the independence test, Pearson (Pearson, 1900) and likelihood ratio (Neyman and Pear-
son, 1933) statistics are proposed as

X2 =
∑ (nij − µ̂ij)2

µ̂ij
, G2 = 2

∑
nij log

(
nij

µ̂ij

)
respectively and they follow approximately chi-squared distribution with degree of freedom
df = (I − 1)(J − 1).

2.2. Independence test for continuous variables
In general, Pearson correlation ρ does not represent the independence or dependence, but
a linear relationship between two random variables. If we assume that paired two random
variables are either independent or just linearly related, then Pearson correlation ρ can be
used to measure independency.

H0 : ρ = 0, H1 : Not H0.

Let n be the number of observations.

• Exact t test for Pearson’s correlation coefficient ρ

t = ρ

√
n − 2
1 − ρ2

is approximately distributed as t(n − 2) under H0.

• Fisher’s Z test

z =
√

n − 3
2

log
(

1 + ρ

1 − ρ

)
is approximately distributed as N(0, 1) under H0.

3. Independence test of a continuous and a discrete random variable
Let X be a discrete random variable and Y be a continuous random variable. X and Y are
independent if and only if

f(y|x) = f(y),

for all X = x and Y = y. Although X can be either finite or infinite, we have finite number
of x′s in a given data set. Thus, for fixed x, we can estimate f̂(y|x) using kernel density
estimation if the number of y is enough for fixed x. Because x’s are finite in the data set,
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we can estimate f̂(y|x) for all x’s belong to the data set. Practically, we can compare the
conditional probability distribution f̂(y|x) and the marginal distribution f̂(y) estimated from
kernel density estimation for finite x’s. We generate random numbers from the distribution of
X and Y independently and estimate f(y|x) and f(y), repeatedly. By numerically integrating
the overlapped region of f̂(y|x) and f̂(y), we obtain the empirical distribution of overlapped
region. Next, we can test the following hypothesis based on a given significant level such as
α = 0.01 and α = 0.05.

H0 : f(y|x) = f(y) for all x and y, H1 : Not H0.

We use the following procedure.

1. We estimate marginal distributions for X and Y separately if we assume a parametric
distribution for variables.

2. We generate random numbers of X and Y independently.

• If we assume parametric distribution for X and Y , then we generate random numbers
of X or Y based on the estimated parameters.

• If a parametric assumption is not feasible, we can generate random numbers of X or Y
using Bootstrap.

3. Estimate f̂(y|x) at fixed x in the data set and f̂(y).

4. Calculate the overlapped area of f̂(y|x) and f̂(y) from the simulated data.

5. Repeat 1–4 many times. Then we obtain the empirical distribution of the overlapped area.

6. Calculate the overlapped area of f̂(y|x) and f̂(y) of the data set and check whether the
value is statistically significant based on the empirical distribution obtained in 5.

We carry out simulations in a few special settings. Simply, we assume that X is distributed
as Bernoulli with the probability p = P (X = 1) and Y ∼ N(0, 1). We set p = 0.2, 0.4, 0.6, 0.8.
We generate random numbers of X and Y independently and estimate the conditional density
f(y|x) for x = 0, 1, and the marginal density f(y). For kernel density estimation for f(y),

f̂(y) = 1
n

n∑
i=1

K

(
y − yi

h

)
,

where K and h are called the kernel and bandwidth, respectively. In R, we used default for K
and h in the function “density”. It defaults a standard normal density for K and Silverman’s
‘rule of thumb’ (Silverman, 1986) for h. For conditional density f(y|x) for x = 0, 1, we also
use the default in R function “density”. According to probability theory, f(y|x) = f(y) for
all x = 0, 1 if X and Y are independent. Thus, we can expect overlapped area of f̂(y|x)
and f̂(y) is close to 1 if the number of observations n is sufficiently large. In Figure 1, it
appears that most areas of f̂(y|x) and f̂(y) are overlapped when p = 0.4 and n = 500. Under
the setting of X ∼ Bernoulli(p = 0.4), the number of 0 is more than that of 1, so that the
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Figure 1: Y is randomly generated from N(0, 1), and X is randomly generate from Bernoulli dis-
tribution with p = 0.4 independently with X. From obtained n = 500 observations, we compare
estimated conditional distributions and estimated marginal distribution. In the left figure, estimated
conditional density on X = 0 (solid line) and estimated marginal density (dotted line) are rep-
resented. In the right figure, estimated conditional density on X = 1 (solid line) and estimated

marginal density (dotted line) are represented.

shape of estimated conditional density on x = 0 is more similar to the estimated marginal
distribution than that of x = 1. In Figure 2, most cases of overlapped area of f̂(y|x) and f̂(y)
is very close to 1 for x = 0, 1 when p = 0.4 and n = 500 in 1,000 simulations. In Table 1, we
represent the 1st and 5th percentile of overlapped area when n = 50, 100, 500. For smaller n,
the overlapped area of f̂(y|x) and f̂(y) decreases. For example, in the case of p = 0.2, the 1st

percentile of overlapped area of f̂(y|1) and f̂(y) is 0.491 for n = 50 while the 1st percentile
of overlapped area of f̂(y|1) and f̂(y) is 0.877 for n = 500. It implies that the estimated
density may not fit well if the data is sparse. Moreover, we cannot use kernel density for the
number of observation is very small. Even if the total number of observations is enough, we
may encounter the subset is sparse when data is filtered given X = x. In this respect, this
method may not be applied when the number of observations of Y given x is small.

4. Comparison to Kolmogorov-Smirnov test

It is possible that the Kolmogorov-Smirnov test can be applied. The Kolmogorov-Smirnov
test (Chakravart et al., 1967) can be used to determine if a sample has a specific distribution.
The Kolmogorov-Smirnov test works well when comparing an estimated distribution to the
fully specified one; however, the Kolmogorov-Smirnov test often makes wrong decision for
two unequally distributed distributions if the two distributions are both estimated. In this
section, we compare rejection rate of the Kolmogorov-Smirnov test and the proposed test
through simulations when the null is true and when the null is false through simulations for
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Figure 2: Y is randomly generated from N(0, 1), and X is randomly generate from Bernoulli dis-
tribution with p = 0.4 independently with Y . From 1,000 simulations with n = 500 observations,
we draw histograms of the overlapped area of estimated conditional density f̂(y|x) and f̂(y), when

X = 0 (top) and X = 1 (bottom).

Table 1: Y is randomly generated from N(0, 1), and X is randomly generate from Bernoulli
distribution with p = 0.2, 0.4, 0.6, 0.8 independently with Y . We find empirical 100α percentile of
overlapped area of f̂(y|x) and f̂(y) for X = 0, 1 and α = 0.01, 0.05.

α n
p = 0.2 p = 0.4 p = 0.6 p = 0.8

x = 0 x = 1 x = 0 x = 1 x = 0 x = 1 x = 0 x = 1

0.01
50 0.895 0.491 0.836 0.723 0.731 0.825 0.504 0.900

100 0.928 0.705 0.884 0.833 0.827 0.883 0.706 0.931
500 0.967 0.877 0.949 0.924 0.920 0.948 0.876 0.967

0.05
50 0.917 0.649 0.865 0.800 0.794 0.866 0.646 0.919

100 0.944 0.766 0.906 0.866 0.859 0.908 0.767 0.944
500 0.972 0.896 0.955 0.934 0.935 0.956 0.898 0.972

the following hypothesis.

H0 : f(y|x) = f(y) for all x and y, H1 : Not H0.

4.1. False positive rate
The rejection of a correct null hypothesis is called a Type I error or false positive in a statistical
hypothesis test. A significant level is the theoretical probability of making a Type I error.
That is, a significant level α = 0.05 implies that among 100 equally distributed distribution
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Table 2: False positive rates are presented for 1,000 simulations based on significant level α = 0.05
(1) X ∼ Ber(p), Y ∼ N(0, 1)

n
p = 0.3 p = 0.4 p = 0.5

cor KS prop cor KS prop cor KS prop
50 0.000 0.002 0.001 0.001 0.000 0.001 −0.001 0.000 0.000

100 0.001 0.001 0.002 0.000 0.001 0.004 0.003 0.000 0.002
200 0.000 0.001 0.007 0.001 0.000 0.011 0.002 0.000 0.012
500 0.000 0.001 0.021 0.000 0.000 0.025 0.001 0.000 0.022

(2) X ∼ Ber(p), Y ∼ 0.5N(0, 1) + 0.5N(5, 1.5)

n
p = 0.3 p = 0.4 p = 0.5

cor KS prop cor KS prop cor KS prop
50 0.000 0.004 0.001 0.004 0.001 0.001 0.011 0.000 0.000

100 −0.004 0.001 0.002 −0.001 0.002 0.003 0.003 0.000 0.008
200 0.000 0.001 0.008 0.001 0.000 0.014 0.000 0.000 0.010
500 0.000 0.001 0.030 −0.001 0.000 0.036 −0.001 0.001 0.039

(3) X ∼ Ber(p), Y ∼ SN(0, 1, 1)

n
p = 0.3 p = 0.4 p = 0.5

cor KS prop cor KS prop cor KS prop
50 −0.001 0.000 0.000 −0.002 0.000 0.001 −0.002 0.000 0.000

100 −0.002 0.002 0.003 0.004 0.000 0.009 −0.007 0.000 0.003
200 0.001 0.002 0.007 0.001 0.002 0.006 −0.003 0.000 0.007
500 0.000 0.004 0.031 0.000 0.000 0.032 0.000 0.000 0.023

For each simulation, we report the average of the correlation coefficients (cor), the rejection rate of
Kolmogorov-Smirnov test (KS) and proposed test (prop).

sets, only five sets can be determined as having unequal distributions. In the simulation, we
generate X and Y independently ; in addition, we conduct a Kolmogorov-Smirnov test and
the proposed test under the significant level α = 0.05 that is repeated 1,000 times in the
following settings.

1. X ∼ Ber(p), Y ∼ N(0, 1).

2. X ∼ Ber(p), Y ∼ 0.5N(0, 1) + 0.5N(5, 1.5).

3. X ∼ Ber(p), Y ∼ SN(0, 1, 1) (Each parameter represents location, scale, shape).

We set p = 0.3, 0.4, 0.5 and sample size n = 50, 100, 200, 500. In Table 2, we present the
result. In most cases, the false positive rates of Kolmogorov-Smirnov test are less than those
of the proposed test. However, we can conclude that all test results are acceptable because
all false positive rates in the proposed test are less than the significant level α = 0.05.

4.2. True positive rate
When the null hypothesis is false but the test result do not reject the null, it is called Type
II error or false negative. In contrast, the test result rejects the null, it is called power. In
order to compare power of the Kolmogorov-Smirnov test and the proposed test, we generate
X and Y dependently and then conduct the tests under the significant level α = 0.05 and
repeat 1,000 times in the following settings.

1. X ∼ 0.5Ber(p), Y ∼ N(X, 1)

2. X ∼ Ber(p), Y ∼ N(X, 1)
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Table 3: True positive rates are represented for 1,000 simulations based on significant level α = 0.05
(1) X ∼ Ber(p), Y ∼ 0.5N(X, 1)

n
p = 0.3 p = 0.4 p = 0.5

cor KS prop cor KS prop cor KS prop
50 0.225 0.028 0.018 0.243 0.011 0.009 0.239 0.005 0.006

100 0.220 0.084 0.087 0.237 0.047 0.129 0.241 0.028 0.140
200 0.222 0.327 0.430 0.240 0.215 0.539 0.244 0.121 0.562
500 0.224 0.894 0.979 0.236 0.816 0.975 0.244 0.720 0.990

(2) X ∼ Ber(p), Y ∼ N(X, 1)

n
p = 0.3 p = 0.4 p = 0.5

cor KS prop cor KS prop cor KS prop
50 0.419 0.250 0.068 0.437 0.150 0.105 0.450 0.083 0.106

100 0.417 0.727 0.709 0.442 0.652 0.811 0.447 0.517 0.830
200 0.416 0.992 0.998 0.442 0.991 1.000 0.447 0.966 1.000
500 0.414 1.000 1.000 0.438 1.000 1.000 0.447 1.000 1.000

(3) X ∼ Ber(p), if X = 0, Y ∼ N(X, 1), else Y ∼ N(5, 1.5)

n
p = 0.3 p = 0.4 p = 0.5

cor KS prop cor KS prop cor KS prop
50 0.892 0.800 0.776 0.897 1.000 0.996 0.893 1.000 0.999

100 0.890 1.000 1.000 0.895 1.000 1.000 0.891 1.000 1.000
200 0.891 1.000 1.000 0.895 1.000 1.000 0.891 1.000 1.000
500 0.890 1.000 1.000 0.895 1.000 1.000 0.891 1.000 1.000

For each simulation, we report the average of the correlation coefficients (cor), the rejection rate of
Kolmogorov-Smirnov test (KS) and proposed test (prop).

3. X ∼ Ber(p), Y ∼
{

N(0, 1), if X = 0,

N(5, 1.5), if X = 1.

We set p = 0.3, 0.4, 0.5 and sample size n = 50, 100, 200, 500. We present the simulation result
in Table 3. The power improves as the correlation coefficients increase. In most cases, true
positive rates of the proposed test are greater than those of Kolmogorov-Smirnov test. In
particular, when p = 0.5, n = 200 in the first simulation and when p = 0.5, n = 100 in the
second simulation, the power of the proposed test is better than the Kolmogorov-Smirnov
test. The only results with the bold face represent the case that the true positive rates of the
proposed test are less than the of Kolmogorov-Smirnov test. It is difficult to apply Kernel
density estimation when we have very very few observations contained in a subset conditional
on a specific X = x. In the first simulation in Table 3, when p = 0.3 and n = 50, around
15 observations have X = 1. It is hard to expect that the probability density is fitted well
using only 15 observations. In that case, our method does not show better results than the
Kolmogorov-Smirnov test. However, the proposed method works better if we have sufficient
number of observations to apply kernel density estimation.

5. Data analysis
The structure learning procedure of Bayesian networks investigates the independence of vari-
ables and then identifies conditional independence between two variables. In this section, we
identify independence of variables in Pima Indian diabetes data using the proposed nonpara-
metric method because we cannot assume a conditional normal distribution for conditional
continuous random variables. The Pima Indian diabetes data set was donated in the UCI
machine learning repository. In the data set, there are no missing values of 768 observations,
but some values of glucose, pressure, triceps, insulin, blood pressure and body mass index
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Table 4: Variables in Pima Indian diabetes data

Variables Distribution Estimated distribution Descriptionassumption
glucose normal N(122.63, 30.822)
pressure normal N(70.66, 12.482)
triceps normal N(29.15, 10.502)
mass normal N(33.09, 7.022)

log(insulin) normal N(4.81, 0.702) ‘insulin’ is highly right skewed.
A log transformation is taken.

log(pedigree) normal N(−0.84, 0.632) ‘pedigree’ is highly right skewed.
A log transformation is taken.

age negative binomial 20 + nb(r̂ = 1.38, p̂ = 0.11) ‘age’ is greater than 20 and an integer.
A location transformation is taken.

pregnant discrete No specific distribution Bootstrapping is used
diabetes Bernoulli Ber(0.33)

are zero. In R package ‘mlbench’ (Leisch et al., 2009), the obscure values are all substituted
as missing values in the data set ‘PimaIndiansDiabetes2’. Excluding those missing values, we
have the number of observations n = 392. We describe the variables in Table 4. This data
set includes both discrete and continuous variables. After log transforming highly skewed
continuous variable ‘insulin’ and ‘pedgree’, we assume that continuous variables distributed
as normal. The variable ‘age’ has an integer value and greater than 20; therefore we consider
it as a location transformed negative binomial distribution. For the variable ‘pregnant’, we
could not assume a specific distribution, so we use bootstrap when we generate random num-
bers for independence test. We assume a Bernoulli distribution because ‘diabetes’ has only
two outcomes 1, 0. According to the distribution assumption, we estimated the parameters
which are given in Table 4.

We test the following three types of paired random variables.

1. A normal random variable and a normal random variable
We carry out the Fisher’s Z test for Pearson’s correlation ρ among normal random vari-
ables. In R package ‘pcalg’ (Kalisch et al., 2019), we can use the function ‘condIndFisherZ’
and set that no given variable is given. In the following, independence test of ith and jth

of data set ‘pima’ is carried out when α = 0.01 and n = 392.

library(pcalg)
corMatrix <- cor(pima[,1:6]);
condIndFisherZ(i,j,NULL,corMatrix,n,0.01)

We conclude that all paired normal random variables are not independent. The results are
given in the left top part of the Table 5.

2. a discrete random variable and a discrete random variable
For paired discrete random variables, we apply Pearson chi square test in the following
way.

chisq.test(table(age,pregnant))
chisq.test(table(age,diabetes))
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Table 5: Result of independence test
Continuous variables Discrete variables

glucose pressure triceps mass log log age pregnant diabetes(insulin) (pedigree)
glucose 0 1 1 1 1 1 0 1 1
pressure 1 0 1 1 1 1 0 1 1

Continuous triceps 1 1 0 1 1 1 0 0 1
variables mass 1 1 1 0 1 1 1 1 1

log(insulin) 1 1 1 1 0 1 0 1 1
log(pedigree) 1 1 1 1 1 0 1 1 1

Discrete
variables

age 0 0 0 1 0 1 0 1 1
pregnant 1 1 0 1 1 1 1 0 1
diabetes 1 1 1 1 1 1 1 1 0

1 indicates that paired variables are not independent, while 0 indicates that paired variables are indepen-
dent.

chisq.test(table(pregnant,diabetes))

We obtain that all paired discrete random variables are not independent based on α = 0.01.
Those results are given in the right bottom part of the Table 5.

3. A normal random variable and a discrete random variable (mixed type)
We have three discrete random variables, which are ‘age’, ‘pregnant’, and ‘diabetes’. For
diabetes = 1, there are 262 observations and for diabetes = 0, there are 130 observations.
It is easy to do kernel density estimation for conditional continuous random variables for
all categories of diabetes because the number of observations in each case is sufficient.
However, some values of ‘age’ and ‘pregnant’ have too small number of observations to
conduct kernel density estimation. It is impossible to conduct kernel density estimation
when the number of observation is less than three. In practice, we perform the proposed
independence test for the case that the number of observations is greater than four, when
given a specific value of age or a specific value of pregnant. In Figure 3, we can see
that twenty four out of a total forty two kinds for ’age’ has more than five observations.
There are 352 observations, which correspond to 89.80% of the total observations of 392.
Similarly, we exclude observations which has the cell count of given pregnant value less
than five, those are pregnant ≥ 13. Then we use 386 observations to perform independence
tests, which is 98.47% of total observations. The results of independence test are given in
Table 5. For example, let x and y be pregnant and triceps, respectively. We calculated
the overlapped area f̂(y|x) and f̂(y) for used values x = 1, 2, . . . , 12 in the test. For
all x = 1, 2, . . . , 12, all overlapped areas are greater than 1st percentile based on the
independently generated y and x. Thus, we concluded that the variable ‘triceps’ and
‘pregnant’ are independent.
In Appendix, we provide the R code to do independence test. First, we use ‘den.adj’
function to estimate density f(y|x) and f(y) using y’s. It often happens that numerical
integration of estimated density is slightly different from one. To adjust it, we calculate
the numerical sum ‘C’ and divide the density by ‘C’. The function ‘alpha percentile’ finds
the threshold corresponding to lower α percentile of overlapped area of f̂(y|x) and f̂(y)
obtained from independently generated random numbers through 2,000 simulations. The
function ‘area overlap mar cond’ calculates overlapped area of estimated marginal density
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Figure 3: Histogram of discrete variable, age and pregnant. Examples of some conditional distribu-
tions of a given age or a given pregnant value.

and estimated conditional density of the data. The function ‘indtest.cont discrete’ gives
the result of independence test of a random variable and a discrete variable.

6. Discussion

We developed an independence test of a continuous random variable and a discrete random
variable. For Bayesian networks, the existing methods are very restricted to analyze mixed
type of variables. The R package ‘bnlearn’ (Scutari et al., 2019) is applicable to only normal
variables because that partial correlation can be used as a conditional correlation when all
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variables are normal (Baba et al., 2014). The R package ‘deal’ can be used to mixed type
of normal variable and discrete variable, but it assumes that conditional continuous distribu-
tion is normal. Our proposed method can be applicable to mixed type of variables without
assuming any specific distribution for the conditional continuous distribution. The proposed
method also has disadvantages. If the number of observations associated with some condi-
tion is very small, we cannot apply our method because it is difficult to use kernel density
estimation for small number of observations. However, if more than 90% of data are avail-
able to perform our proposed method, we can expect our independence test to be practically
used. Also, the proposed test is more powerful than Kolmogorov-Smirnov test for sufficient
number of observations. Our method can be used for the first step of constraint-based causal
structure learning such as PC algorithm (Neapolitan, 2003; Spirtes et al., 2000). In PC al-
gorithm or PC-stable algorithm (Colombo and Maathuis, 2014), first independence test of
paired variables is performed. Next, those algorithm find variables are in the conditional
independence relationship increasing the number of conditional variables. To find the causal
structure, practical conditional independence tests are required. We are planning to examine
a nonparametric conditional independence test without assuming a specific distribution for a
future work.

Acknowledgements

Mijeong Kim was supported by a National Research Foundation of Korea (NRF) grant funded
by the Korean Government (NRF-2017R1C1B5015186).

Appendix: R function

den.adj<-function(x){
d <- density.default(x, n = 512, cut = 3)
xx <- d$x ## 512 evenly spaced points on [min(x) - 3 * d$bw, max(x) + 3

* d$bw]
dx <- xx[2L] - xx[1L] ## spacing / bin size
yy <- d$y
f <- approxfun(xx, yy)
C <- integrate(f, min(xx), max(xx),rel.tol=.Machine$double.epsˆ.05)$value
yy1<-yy/C
return(list(x=na.omit(xx),f,C))

}

###############################################################
alpha_percentile<-function(a,b,alpha){
### A: Gaussian (col1-col6, "glucose","pressure","triceps","mass","l_insulin",

"l_pedigree"),
### B: Discrete (col7-col9, "age","pregnant","diabetes")

A<-dta[,a]; B<-dta[,b]
B.name<-colnames(dta)[b]
fit.A<-dta.fitting[[a]]
t.B<-data.frame(table(B));
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B.unique<-unclass(as.numeric(as.character(t.B[which(t.B$Freq>=5),1])))
m<-length(B.unique); nsim<-2000; n<-392; sim1<-matrix(NA,nrow=nsim,ncol=m)

for(iter in 1:nsim){
for(j in 1:m){

current_item<-B.unique[j]
sample.A<-rnorm(n,mean=fit.A$estimate[1],sd=fit.A$estimate[2])
if(b==7){

fit.B<-dta.fitting[[b]]
sample.B<-rnbinom(n,size=fit.B$estimate[1],mu=fit.B$estimate[2])+20}

if(b==8){ sample.B<-sample(B,size=n,replace=T)}
if(b==9){ sample.B<-rbinom(n,size=1,prob=dta.fitting[[9]])}

dta<-data.frame(sample.A,sample.B)
c.dta<-dta[sample.B==current_item,1]

if(length(c.dta)>=3){
A.list<-den.adj(sample.A)
A.x<-A.list[[1]]; A.f<-A.list[[2]]; A.list.cond.B<-den.adj(c.dta)
A.c.x<-A.list.cond.B[[1]]
A.cond.f<-A.list.cond.B[[2]]

xnew<-seq(max(c(min(A.x),min(A.c.x))),min(c(max(A.x),max(A.c.x))),
length.out=512)

df1<-A.f(xnew)/A.list[[3]]
df2<- A.cond.f(xnew)/A.list.cond.B[[3]]
min.df<-na.omit(sapply(1:length(df1), function(t) min(df1[t],df2[t])))
dx<-xnew[2L]-xnew[1L]
sim1[iter,j]<-sum(min.df)*dx

}
}

}

alpha.vector<-rep(NA,m)

for(j in 1:m){
temp<-na.omit(sim1[,j]);
n1<-length(temp)
alpha.vector[j]<-sort(temp)[round(n1*alpha)]

}
return(list(alpha.vector,var_name=B.unique,dta=sim1))

}

###############################################################
area_overlap_mar_cond<-function(a,b){

A<-dta[,a]; B<-dta[,b]
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t.B<-data.frame(table(B));
B.unique<-unclass(as.numeric(as.character(t.B[which(t.B$Freq>=5),1])))
m<-length(B.unique)
A.list<-den.adj(A); A.x<-A.list[[1]]; A.f<-A.list[[2]]
area_overlap<-rep(NA,m)

for(j in 1:m){
current_item<-B.unique[j]
dta<-data.frame(A,B)
c2.dta<-dta[B==current_item,1]
A.list.cond.B<-den.adj(c2.dta)
A.c.x<-A.list.cond.B[[1]]
A.cond.f<-A.list.cond.B[[2]]
xnew<-seq(max(c(min(A.x),min(A.c.x))),min(c(max(A.x),max(A.c.x))),length.

out=512)
df1<-A.f(xnew)/A.list[[3]]
df2<- A.cond.f(xnew)/A.list.cond.B[[3]]
min.df<-na.omit(sapply(1:length(df1), function(t) min(df1[t],df2[t]) ))
dx<-xnew[2L]-xnew[1L]
area_overlap[j]<-sum(min.df)*dx

}
return(list(area_overlap,var_name=B.unique))

}

###############################################################
indtest.cont_discrete<-function(a,b,alpha){

threshold<-alpha_percentile(a,b,alpha)
dta<-threshold[[3]]
test_value<-area_overlap_mar_cond(a,b)
diff<-test_value[[1]]-threshold[[1]]
diff_sign<-ifelse(diff>0,0,1)
return(list(diff_sign,var_name=test_value[[2]],dta=dta))

}

References
Baba K, Shibata R, and Sibuya M (2004). Partial correlation and conditional correlation as

measures of conditional independence, Australian & New Zealand Journal of Statistics,
46, 657–664.

Chakravarti IM, Laha RG, and Roy J (1967). Handbook of Methods of Applied Statistics (Vol.
I), John Wiley & Sons, New York.

Colombo D and Maathuis MH (2014). Order-independent constraint-based causal structure
learning, The Journal of Machine Learning Research, 15, 3741–3782.

Kalisch M, Hauser A, Maechler M, et al. (2019). Package ‘pcalg’.
Leisch F, Dimitriadou E, Leisch MF, et al. (2009). Package ‘mlbench’.
Neapolitan RE (2004). Learning Bayesian Networks, Pearson Prentice Hall, Upper Saddle



Independence test 299

River, NJ.
Neyman J and Pearson ES (1933). On the problem of the most efficient tests of statisti-

cal hypotheses, Philosophical Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Character, 231, 289–337.

Pearl J, Glymour M, and Jewell NP (2016). Causal Inference in Statistics: A Primer, John
Wiley & Sons, Chichester.

Pearson K (1900). On the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling, The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 50, 157–175.

Russell SJ and Norvig P (2003). Artificial Intelligence: A Modern Approach (2nd ed), Prentice
Hall, Upper Saddle River, N.J., 111–114.

Scutari M, Scutari MM, and MMPC HP (2019). Package ‘bnlearn’.
Scutari M and Denis JB (2014). Bayesian Networks: with Examples in R, Chapman and

Hall/CRC, Boca Raton.
Silverman BW (1986). Density Estimation, Chapman and Hall, London.
Spirtes P, Glymour CN, Scheines R, and Heckerman D (2000). Causation, Prediction, and

Search (2nd ed), MIT press, Cambridge, Mass.

Received October 26, 2019; Revised February 15, 2020; Accepted February 20, 2020


