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Abstract

Smoothly clipped absolute deviation (SCAD) penalty is known to satisfy the desir-
able properties for penalty functions like as unbiasedness, sparsity and continuity. In
this paper, we deal with the regression function estimation and variable selection based
on SCAD penalized censored regression model. We use the local linear approximation
and the iteratively reweighted least squares algorithm to solve SCAD penalized log
likelihood function. The proposed method provides an efficient method for variable se-
lection and regression function estimation. The generalized cross validation function is
presented for the model selection. Applications of the proposed method are illustrated
through the simulated and a real example.

Keywords: Censored regression model, generalized cross validation function, iteratively
reweighted least squares procedure, smoothly clipped absolute deviation penalty, vari-
able selection.

1. Introduction

The least squares method and censored regression model are widely accepted and well
understood in the field of statistics. Koul et al. (1981) proposed a simple least squares
method for the censored regression model by using the weighted observations. Zhou (1992)
proposed an M-estimators of the censored regression model based on the Koul et al. (1981).
Orbe et al. (2003) proposed an estimation procedure of the censored partial regression model.
The objective function with the penalized weighted least squares through iterative procedure
is used. They also proposed the bootstrap sampling to get the uncertainty measures of the
estimators. Ghosh and Ghosal (2006) proposed a nonparametric Bayesian method which
uses a Dirichlet prior for the mixture of Weibull distributions in the censored regression
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model. They used Markov Chain Monte Carlo method (Geyer, 1992) to obtain the marginal
posterior distribution of parameters.

Generally, all the input variables may not much affect the survival time so that some re-
gression parameters may be zeros in true regression model. Many variable selection methods
such as the stepwise method, best subset method and the Bootstrap procedures (Sauerbrei
and Schumacher, 1992) for the linear regression models have been extended to the survival
models. Tibshirani (1997) applied LASSO (least absolute shrinkage and selection operator;
Tibshirani, 1996) to the Cox proportional hazards model (Cox, 1972). It is well known from
Tibshirani (1996) that LASSO performs both variable selection and regularization in order
to enhance the prediction accuracy and interpretability of the statistical model it produces.
Huang et al. (2005) proposed a regularized estimation in the accelerated failure time model
using LASSO. Hu and Rao (2010)proposed a weighted least squares method for the censored
regression model with sparse penalization.

Smoothly clipped absolute deviation (SCAD) penalty proposed by Fan and Li (2001) is
known to satisfy all of the three desirable requirements (unbiasedness, sparsity, continuity)
for penalty functions. They also show that the performance of SCAD is expected to be as
good as that of the oracle estimator as the sample size increases. We consider the censored
regression with the SCAD penalty. We apply the iteratively reweighted least squares (IR-
WLS) procedure to solve the local linear approximation of SCAD penalized log-likelihood
function. Then the variable selection is performed by using the absolute values of estimated
parameters.

The paper is organized as follows. In Section 2 we give the reviews of censored regression.
In Section 3 we present an estimation method for censored regression with SCAD penalty.
In Section 4 we conduct the numerical studies with simulated and a real data set. Finally
we give the conclusions in Section 5.

2. Censored regression

In this paper we set xi be the input vector of size dx × 1 and ti be the response vari-
able (survival times) corresponding to input vector, xi or transformation on the response
variable, where i = 1, 2, · · · , n . In fact we cannot observe ti’s but the observed variable,
yi = min(ti, ci) and δi = I (ti ≤ ci), where I(·) denotes the indicator function and ci is
the censoring variable corresponding to xi . Here ci ’s are assumed to be independently
distributed with unknown survival distribution function, S . We set f(xi) be the regression
function of the response variable given xi . We assume that f(xi) is related to the input
vector xi in a linear form without a bias as

f(xi) = x′iβ, i = 1, 2, · · · , n,

where β is a dx × 1 regression parameter vector.
In most practical cases the survival distribution function of ci ’s, S, is not known and

its estimate is usually obtained by the Kaplan-Meier (1958) estimator or its variants. The
problem considered in the censored regression model is that of the estimation of f(xi) based
on (δ1, y1,x1), · · · , (δn, yn,xn) . Buckley and James (1979) proposed the pseudo-response
variable such that

ỹi = yiδi + E(ti|ti > yi,xi)(1− δi).
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They showed E(y∗i |xi) = E(ti|xi) and developed an iteration procedure to estimate the
regression parameters β . Koul et al. (1981) proposed the new observable response y∗i as
y∗i = wiyi with

wi =
δi

Ŝ(yi)
,

and showed ỹi has the same mean as ti and thus it follows the same linear model as ti
does. Here, Ŝ, the Kaplan-Meier estimators of survival distribution function S of ci ’s can
be obtained as,

Ŝ(y) =


∏
i:y(i)≤y

(
n−i
n−i+1

)1−δ(i)
, if y ≤ y(n)

0, otherwise

where (y(i), δ(i)) is (yi, δi) ordered on yi for i = 1, · · · , n . Koul et al. (1981) proposed the least
squares regression of y∗i on xi in the censored regression model. Zhou (1992) obtained the
estimators of regression parameters using the weighted least squares regression as follows:

β̂ = (X ′WX)−1X ′Wy, (2.1)

where X = (x1, · · · ,xn)′ is an n×dx matrix and W is a diagonal matrix of wi ’s. β̂ in (2.1)
can be regarded as the minimizer of the following objective function

`(β) =
1

2

n∑
i=1

wi(yi − x′iβ)2. (2.2)

3. SCAD penalized censored regression

From (2.2) we assume that ri =
√
wi(yi − f(xi)) follows a probability distribution such

that p(ri) ∝ exp(−0.5r2i ) . Then the negative loglikelihood of the given data set without
constant terms can be expressed as

`(f) =
1

2

n∑
i=1

wi(yi − f(xi))
2,

where f(xi) = x′iβ . Then the maximum likelihood estimators of β are obtained by mini-
mizing (2.2).

The maximum likelihood estimators of β generally lead severe overfitting, which inspires
us to use a penalty term of β to avoid overfitting. Among many penalty functions, the SCAD
is rated as the best one. The SCAD penalty results in small parameter estimators being set
to zero, a few other parameter estimators being shrunk toward to zero while retaining the
large parameter estimators as they are, which produce the sparse estimators of parameters.
We use SCAD penalty in the censored regression, which is given by

pλ(|βk|)=λ|βk|I(|βk| ≤ λ)− β
2
k − 2aλ|βk|+ λ2

2(a− 1)
I(λ < |βk| ≤ aλ)+

(a+ 1)λ2

2
I(|βk| > aλ),

where λ > 0 is a penalty parameter. Fan and Li (2001) suggested that a = 3.7 is a good
choice for various problems. Then the penalized objective function of β is obtained as follows:
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L0(β) =
1

2

n∑
i=1

wi(yi − x′iβ)2 +

dx∑
k=1

pλ(|βk|), (3.1)

where pλ(|βk|) is a SCAD penalty.
Since the objective function L0(β) in (3.1) is not differentiable with respect to β at

zero, we need a modification of L0(β) for the differentiability. We first use the local linear
approximation of SCAD penalty as follows:

pλ(|βk|) ≈ pλ(|β(0)
k |) + p

(1)
λ (|β(0)

k |)(|βk| − |β
(0)
k |)for|βk| ≈ |β

(0)
k |,

where p
(1)
λ (|β(0)

k |) is the first derivative of pλ(|βk|) with respect to |βk| at |β(0)
k |, which is

given by

p
(1)
λ (|βk|) = λI(|βk| ≤ λ) +

(aλ− |βk|)+
(a− 1)

I(|βk| > λ)

with (r)+ = rI(r ≥ 0) .
Then the objective function L(β) in (3.1) can be modified to

L(β) =
1

2

n∑
i=1

wi(yi − x′iβ)2 +

dx∑
k=1

p
(1)
λ (|βk|)|βk|. (3.2)

The objective function L(β) in (3.2) is convex in β, but still not differentiable with respect
to β at zero. Using (3.2) we define an objective function given β∗ as follows:

L(β|β∗) =
1

2

n∑
i=1

wi(yi − x′iβ)2 +
1

2

dx∑
k=1

p
(1)
λ (|β∗k |)(

β2
k

|β∗k |
+ |β∗k |).

Note that L(β|β∗) ≥ L(β), with equality if β = β∗ (Krishnapuram et al., 2005), and is
differentiable with respect to β . With the objective function L(β|β∗) we propose a variable
selection algorithm for SCAD penalized censored regression as follows:

i) Set β̂
(0)

be the solution to `(β) in (2.2).

ii) β̂
(t+1)

is the minimizer of

L(β|β̂
(t)

) =
1

2

n∑
i=1

wi(yi − x′iβ)2 +
1

2

dx∑
k=1

p
(1)
λ (|β̂(t)

k |)(
β2
k

|β̂(t)
k |

+ |β̂(t)
k |),

with respect to β as

β̂
(t+1)

= (X ′WX + V (β̂
(t)

))−1X ′Wy,

where β̂
(t)
k is the estimator obtained at the t th iteration and V (β̂

(t)
) is the diagonal

matrix consisted of p
(1)
λ (|β̂(t)

k |)/|β̂
(t)
k |, k = 1, · · · , dx .

iii) Iterate ii) until convergence.

iv) Build the new data set composed of 0 and |β̂k|’s for k = 1, · · · , dx .

v) Using |β̂k| and max{|β̂k|} − |β̂k|, divide the new data set into two clusters.
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vi) Variables corresponding to the cluster which includes max{|β̂k|} are treated as the
important variables selected.

The SCAD penalty in the censored regression is affected by the penalty parameter λ .
We define the cross validation (CV) function to choose the optimal penalty parameter as
follows:

CV (λ) =
1

n

n∑
i=1

wi(yi − f̂ (−i)λ (xi))
2.

Here f̂
(−i)
λ (xi) is the estimated function without the i th observation. Since f

(−i)
λ (xi)

for i = 1, · · · , n, should be calculated for each candidate of penalty parameter, choosing
parameters through CV function is computationally expensive. To save computing time, we
use the GCV function is obtained as follows:

GCV (λ) =

n
n∑
i=1

wi(yi − f̂λ(xi))
2

(n− tr(H))2
,

where H = x(x′Wx + V (λ))−1x′W such that f̂λ(x) = Hy with the (i, j) th element

hij = ∂f̂(xi)/∂yj . We can find the details of derivation of GCV function in Shim and Seok
(2014).

4. Numerical studies

This section investigates capabilities of the proposed method (censored regression with
SCAD penalty, CREG SCAD) for function estimation and variable selection methods through
the simulated as well as a real data set.

4.1. Artificial data

We generate 200 artificial data sets to compare the performance of the estimation and the
variable selection with the L1-penalized censored regression (CREG L1; Hwang et al., 2011)
and the weighted least squares regression (WLSE) of Zhou (1992) in (2.1). For each i =
1, · · · , 100, xi1, · · · , xi20 are independently generated from a uniform distribution, U(0, 1),
respectively, and (t, c) ’s are generated as follows:

ti = f(xi) + εti , ci = 0.4 + εci , i = 1, · · · , 100,

where f(xi) = x′iβ, β = (1, 0,−1, 0, · · · , 0)′ ∈ R20×1, εti ’s and εci ’s are independently
generated from normal distribution, N(0, 0.52) . For each data set, the optimal values of the
penalty parameters of CREG SCAD and CREG L1 are chosen from GCV function.

Average of 200 censoring proportions is obtained as 0.3194. Figure 4.1 shows the box plots
of each β̂k’s by CREG SCAD (left), CREG L1 (middle) and WLSE of Zhou (1992) (right).
From Figure 4.1 we can see that 3 models show that x1 and x3 are the most important
variables, and we also can see that CREG SCAD provides the stable estimates of βk’s of
zero true values. Table 4.1 shows average numbers of selected variables and average numbers
of selected true important variables (x1, x3).
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Figure 4.1 Box plots of regression parameter estimators in example 4.1

Recovery rate is defined as the ratio of average number of selected true important variables
to the average number of selected variables as in Kim et al. (2013). From Table 4.1 we know
that the recovery rate of CREG SCAD is higher than that of CREG L1. We also obtained
the mean squared error of each data set. As results we obtained the averages of 200 mean
squared errors and their standard errors for CREG SCAD as (0.0828, 0.0034), (0.0971,
0.0024) for CREG L1, and (0.1096, 0.0027) for WLSE of Zhou (1992), respectively. This
implies that CREG SCAD has better estimation performance than CREG L1 and WLSE
in this example. In Table 4.2 we obtained the averages of β̂k’s for k = 1, · · · , 20 . The
boldfaced figure in each column signifies the estimate closest to true value of βk . From
Figure 4.1, Table 4.1 and 4.2 we can see that CREG SCAD shows better performances of
variable selection than other two methods.

Table 4.1 Average number of selected variables and average number of selected true important variables
(standard error in parenthesis)

Avg. no. of selected variables Avg. no. of selected important variables recovery rate
CREG SCAD 2.620(0.0319) 1.710(0.0162) 0.6527

CREG L1 13.670(0.1723) 1.990(0.0071) 0.1456

Table 4.2 Estimations of parameters in example 4.1 (standard error in parenthesis)

parameter true value CREG SCAD CREG L1 WLSE
β1 1 0.7272 (0.0281) 0.6743 (0.0186) 0.8084 (0.0189)
β2 0 -0.0008 (0.0086) -0.0075 (0.0123) -0.0169 (0.0177)
β3 -1 -0.7150 (0.0247) -0.6857 (0.0161) -0.8272 (0.0170)
β4 0 -0.0213 (0.0088) -0.0292 (0.0135) -0.0358 (0.0196)
β5 0 0.0106 (0.0061) 0.0100 (0.0109) 0.0196 (0.0164)
β6 0 -0.0079 (0.0094) 0.0009 (0.0139) 0.0022 (0.0199)
β7 0 -0.0073 (0.0082) -0.0075 (0.0131) -0.0090 (0.0177)
β8 0 -0.0009 (0.0091) 0.0012 (0.0131) 0.0027 (0.0189)
β9 0 -0.0104 (0.0078) -0.0179 (0.0127) -0.0201 (0.0177)
β10 0 -0.0001 (0.0084) 0.0045 (0.0128) 0.0087 (0.0176)
β11 0 0.0038 (0.0081) 0.0151 (0.0126) 0.0216 (0.0176)
β12 0 -0.0058 (0.0069) -0.00107 (0.0126) -0.0060 (0.0190)
β13 0 -0.0043 (0.0072) -0.0059 (0.0121) 0.0017 (0.0181)
β14 0 0.0072 (0.0099) -0.0150 (0.0134) -0.0016 (0.0181)
β15 0 0.0150 (0.0115) 0.0149 (0.0141) 0.0134 (0.0200)
β16 0 0.0110 (0.0071) 0.0097 (0.0121) 0.0186 (0.0178)
β17 0 -0.0069 (0.0094) -0.0141 (0.0132) -0.0158 (0.0186)
β18 0 -0.0063 (0.0068) -0.0193 (0.0123) -0.0149 (0.0185)
β19 0 0.0174 (0.0088) 0.0291 (0.0121) 0.0502 (0.0176)
β20 0 0.0004 (0.0108) -0.0019 (0.0136) 0.0004 (0.0188)
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4.2. Real data

We applied CREG SCAD to the Diffuse large B-cell lymphoma survival times and gene
expression data set by Rosenwald et al. (2002). This data set consists of 7399 genes expression
values from 240 patients with Diffuse large B-cell lymphoma. Deaths of 138 patients are
included during the follow-ups with a median death time of 2.80 years.

As in Bair and Tibshirani (2004), the patients were randomly divided into training and test
sets with 160 patients and 80 patients, respectively. Each input variable xik, i = 1, · · · , 240,
k = 1, · · · , 7399, is standardized to (xik −min(X .k))/(max(xk)−min(X .k)), where X .k is
the k th column of the 240× 7399 input matrix X.

To compare the performance of variable selection and estimation method for censored
data, Li (2006), Hu and Rao (2010) proposed to divide patients into high risk and low risk
group according to the survival time estimators, and then compare the difference between
survival times of two risk groups, where the estimated medians are used as the cut-points.
We can say that the selected variables are expected to be predictive if there is a significant
difference between two risk groups.

The estimated medians were obtained by CREG SCAD as 4.0882 for training data and
3.7977 for test data. Using these cut-points we obtained Kaplan-Meier estimates of survival
functions for two risk groups of training data and test data. They are shown in Figure 4.2.
The dotted lines are survival functions for a high risk group, the solid lines are those for a
low risk group, and ’o’ represents censored data point.

Figure 4.2 Survival function estimators for two risk groups of training data (left) and test data (right)

By quadratic programming with censoring and LASSO constraints (Hu and Rao, 2010) 79
genes were selected, log-rank tests show that χ2

(1) = 116.12 and p-value < 1e-10 for training

data, and χ2
(1) = 4.55 and p-value = 0.017 for test data. Li (2006) reported that by the

gradient LASSO (Huang et al., 2005) 37 genes were chosen and resulted in p-value of the
log-rank test of test data equal to 0.05. By CREG L1, 99 genes were chosen, log-rank tests
show that χ2

(1) = 32.17 and p-value < 1e-7 for training data, and χ2
(1) = 12.96 and p-value

=0.00031 for test data. By CREG SCAD, 5 genes were selected, log-rank tests reveal that
χ2
(1) = 56.77 and p-value< 1e-10 for training data, and χ2

(1) = 32.45 and p-value< 1e-7 for
test data, which show highly significant difference in survival times between the two risk
groups for training data and test data. Thus the smaller p-values of log-rank tests show
better predictive performance of CREG SCAD than the other methods for test data.
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5. Conclusions

In this paper, we proposed the regression function estimation and variable selection method
based on SCAD penalized censored regression model. To solve the local linear approximation
of SCAD penalized loglikelihood function of censored regression model we use the iteratively
reweighted least squares method. It provides an efficient variable selection and the general-
ized cross validation function for easy model selection. Through the examples we investigated
that the proposed method yields the satisfying results.
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