• 제목/요약/키워드: Vapor synthesis

검색결과 389건 처리시간 0.021초

New Processing of LED Phosphors

  • Toda, Kenji
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권5호
    • /
    • pp.225-228
    • /
    • 2012
  • In order to synthesize LED phosphor materials, we have applied three novel synthesis techniques, "melt synthesis", "fluidized bed synthesis" and "vapor-solid hybrid synthesis", in contrast with the conventional solid state reaction technique. These synthesis techniques are also a general and powerful tool for rapid screening and improvements of new phosphor materials.

열화학기상증착법에 의한 백금 기판 위의 그래핀 합성 (Graphene Synthesis on Pt Substrate using a Chemical Vapor Deposition Method)

  • 이병주;정구환
    • 산업기술연구
    • /
    • 제35권
    • /
    • pp.89-94
    • /
    • 2015
  • Graphene is a carbon-based two dimensional honeycomb lattice with monoatomic thickness and has attracted much attention due to its superior mechanical, electronic, and physical properties. Here, we present a synthesis of high quality graphene on Pt substrate using a chemical vapor deposition (CVD). We optimized synthesis condition with various parameters such as synthesis temperature, time, and cooling rate. Based on the results, we concluded that graphene synthesis is driven by mainly carbon adsorption on surface rather than precipitation of carbon which is dominant in other metal substrate. In addition, Pt substrate can be repeatedly used several times with high quality graphene.

  • PDF

Single Crystalline NbO2 Nanowire Synthesis by Chemical Vapor Transport Method

  • Lee, Sung-Hun;Yoon, Ha-Na;Yoon, Il-Sun;Kim, Bong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.839-842
    • /
    • 2012
  • We report for the first time the synthesis of niobium dioxide nanowires on a sapphire substrate by chemical vapor transport method. We identified single crystalline nature of as-synthesized nanowires by scanning electron microscopy and transmission electron microscopy. Niobium dioxide nanowires with their large surface-to-volume ratio and high activities can be employed for electrochemical catalysts and immunosensors. The Raman spectrum of niobium dioxide nanowires also confirmed their identity.

Incorporation of Titanium into H-ZSM-5 Zeolite via Chemical Vapor Deposition: Effect of Steam Treatment

  • Xu, Cheng-Hua;Jin, Tai-Huan;Jhung, Sung-Hwa;Hwang, Jin-Soo;Chang, Jong-San;Qiu, Fa-Li;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.681-686
    • /
    • 2004
  • Ti-ZSM-5 prepared by secondary synthesis, from the reaction of H-ZSM-5 with vapor phase $TiCl_4$, was characterized with several physicochemical techniques including FT-IR and UV/VIS-DRS. It was found that zeolite structure, surface area and pore volume did not change, and the framework aluminum could not be replaced by titanium atom during the secondary synthesis of Ti-ZSM-5. The incorporation of titanium into the framework might be due to reaction of $TiCl_4$with the silanol groups associated with defects or surface sites. The formation of extra-framework titanium could not be avoided, unless the samples were further treated by water vapor at 550 $^{\circ}C$ or higher temperature. High temperature steam treatment of Ti-ZSM-5 prepared by chemical vapor deposition with $TiCl_4$was efficient to prevent the formation of non-framework titanium species. Ti-ZSM-5 zeolites prepared in this work contained only framework titanium species and exhibited improved catalytic property close to TS-1 prepared by hydrothermal synthesis.

Synthesis and Characterization of Carbon nanofibers on Co and Cu Catalysts by Chemical Vapor Deposition

  • Park, Eun-Sil;Kim, Jong-Won;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1687-1691
    • /
    • 2014
  • This study reports on the synthesis of carbon nanofibers via chemical vapor deposition using Co and Cu as catalysts. In order to investigate the suitability of their catalytic activity for the growth of nanofibers, we prepared catalysts for the synthesis of carbon nanofibers with Cobalt nitrate and Copper nitrate, and found the optimum concentration of each respective catalyst. Then we made them react with Aluminum nitrate and Ammonium Molybdate to form precipitates. The precipitates were dried at a temperature of $110^{\circ}C$ in order to be prepared into catalyst powder. The catalyst was sparsely and thinly spread on a quartz tube boat to grow carbon nanofibers via thermal chemical vapor deposition. The characteristics of the synthesized carbon nanofibers were analyzed through SEM, EDS, XRD, Raman, XPS, and TG/DTA, and the specific surface area was measured via BET. Consequently, the characteristics of the synthesized carbon nanofibers were greatly influenced by the concentration ratio of metal catalysts. In particular, uniform carbon nanofibers of 27 nm in diameter grew when the concentration ratio of Co and Cu was 6:4 at $700^{\circ}C$ of calcination temperature; carbon nanofibers synthesized under such conditions showed the best crystallizability, compared to carbon nanofibers synthesized with metal catalysts under different concentration ratios, and revealed 1.26 high amorphicity as well as $292m^2g^{-1}$ high specific surface area.

화학기상합성에 의해 제조된 $n-TiO_2$ 분말의 분말특성 (Powder Characteristics of $n-TiO_2$ Powder Synthesized by Chemical Vapor Synthesis)

  • 김혜경
    • 한국분말재료학회지
    • /
    • 제6권3호
    • /
    • pp.238-245
    • /
    • 1999
  • The preparation of $n-TiO_2$ powder by the Chemical Vapor Synthesis process (CVS) was studied using the liquid metal organic precursor (TTIP). The residence time and the collection methods were considered as main processing variables through the experiments. The CVS equipment consisted of a micropump and a flashvaporizer, a tube furnace and a tubular collection device. The synthesis was performed at $1000^{\circ}C$ with various sets of collection zone. The residence time and the total system pressure were controlled in the range of 3~20 ms and 10 mbar, respectively. Nitrogen adsorption, X-ray diffraction and electron microscopy were used to determine particle size, specific surface area and crystallographic structure. The grain size of the as-prepared $n-TiO_2$ powder was in the range of 2~8 nm for all synthesis parameters and the powder exhibited only little agglomeration. The relationship between particle characteristics and the processing variables is reviewed based on simple growth model.

  • PDF

열화학증기증착법을 이용한 그래핀의 합성 및 투과전자현미경 관찰용 그리드 멤브레인으로의 응용 (Synthesis of Graphene Using Thermal Chemical Vapor Deposition and Application as a Grid Membrane for Transmission Electron Microscope Observation)

  • 이병주;정구환
    • 한국재료학회지
    • /
    • 제22권3호
    • /
    • pp.130-135
    • /
    • 2012
  • We present a method of graphene synthesis with high thickness uniformity using the thermal chemical vapor deposition (TCVD) technique; we demonstrate its application to a grid supporting membrane using transmission electron microscope (TEM) observation, particularly for nanomaterials that have smaller dimensions than the pitch of commercial grid mesh. Graphene was synthesized on electron-beam-evaporated Ni catalytic thin films. Methane and hydrogen gases were used as carbon feedstock and dilution gas, respectively. The effects of synthesis temperature and flow rate of feedstock on graphene structures have been investigated. The most effective condition for large area growth synthesis and high thickness uniformity was found to be $1000^{\circ}C$ and 5 sccm of methane. Among the various applications of the synthesized graphenes, their use as a supporting membrane of a TEM grid has been demonstrated; such a grid is useful for high resolution TEM imaging of nanoscale materials because it preserves the same focal plane over the whole grid mesh. After the graphene synthesis, we were able successfully to transfer the graphenes from the Ni substrates to the TEM grid without a polymeric mediator, so that we were able to preserve the clean surface of the as-synthesized graphene. Then, a drop of carbon nanotube (CNT) suspension was deposited onto the graphene-covered TEM grid. Finally, we performed high resolution TEM observation and obtained clear image of the carbon nanotubes, which were deposited on the graphene supporting membrane.

텅스텐이 도핑된 티타니아 나노분말의 화학기상합성 및 광촉매 활성 (Tungsten-Doped Titania Nanopowders - Their Chemical Vapor Synthesis and Photocatalytic Activity)

  • 박보인;강계명;지현석;송봉근;박종구;조소혜
    • 한국가스학회지
    • /
    • 제16권6호
    • /
    • pp.143-147
    • /
    • 2012
  • 티타니아($TiO_2$) 나노분말의 우수한 광촉매 활성은 이를 친환경 소재로서 많은 주목을 받도록 하였다. 특히, 최근 들어 이러한 $TiO_2$의 광촉매 활성을 향상시키기 위하여 $TiO_2$ 나노분말에 금속 혹은 비금속 원소를 도핑하는 방법이 널리 시도되고 있다. 화염법, 화학기상합성법, 졸-젤법, 공침법, 이온 주입법 등 다양한 방법들이 사용되고 있으며 합성법에 따라 원소들의 도핑 거동이 달라지므로 $TiO_2$의 전자구조 및 표면성질들이 합성법의 영향을 받게 되며 광촉매 활성 역시 달라진다. $TiO_2$의 광촉매 활성은 합성법 자체에 영향을 받는 것 외에 후속의 열처리에 의해서도 달라질 수 있다. 본 연구에서는 우수한 광촉매 활성을 가진 $TiO_2$ 나노분말 소재를 제조하기 위하여 화학기상합성법(chemical vapor synthesis, CVS)으로 텅스텐(W) 원소가 도핑된 $TiO_2$ 나노분말을 제조하고 물성 및 광촉매 특성을 조사하였다. 일부의 $TiO_2$ 나노분말은 $300^{\circ}C{\sim}700^{\circ}C$ 범위에서 열처리한 후 물성 및 광촉매 특성의 변화를 조사하였다.

물을 첨가한 탄소나노튜브의 저온 저압 합성 (Water-Assisted Synthesis of Carbon Nanotubes at Low Temperature and Low Pressure)

  • 김영래;전홍준;이내성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.395-395
    • /
    • 2008
  • Water-assisted synthesis of carbon nanotubes (CNTs) has been intensively studied in recent years, reporting that water vapor enhances the activity and lifetime of metal catalyst for the CNT growth. While most of these studies has been focused on the supergrowth of CNTs at high temperature, rarely has the similar approach been made for the CNT synthesis at low temperature. Since the metal catalyst are much less active at lower temperature, we expect that the addition of water vapor may increase the activity of catalyst more largely at lower temperature. We synthesized multi-walled CNTs at temperature as low as $360^{\circ}C$ by introducing water vapor during growth. The water addition caused CNTs to grow ~3 times faster. Moreover, the water-assisted growth prolonged the termination of CNT growth, implying the enhancement of catalyst lifetime. In general, a thinner catalyst layer is likely to produce smaller-diameter, longer CNTs. In a similar manner, the water vapor had a greater effect on the growth of CNTs for a smaller thickness of catalyst in this study. To figure out the role of process gases, CNTs were grown in the first stage and then exposed to each of process gases in the second stage. It was shown that water vapor and hydrogen did not etch CNTs while acetylene led to the additional growth of CNTs even faster in the second stage. As-grown CNTs were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and Raman spectroscopy.

  • PDF