DOI QR코드

DOI QR Code

Tungsten-Doped Titania Nanopowders - Their Chemical Vapor Synthesis and Photocatalytic Activity

텅스텐이 도핑된 티타니아 나노분말의 화학기상합성 및 광촉매 활성

  • Park, Bo-In (Center for Materials Architecturing, Institute of Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology) ;
  • Kang, Kae-Myung (Center for Materials Architecturing, Institute of Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology) ;
  • Jie, Hyunseock (Depart. of Materials Science & Engineering, Seoul National University of Science and Technology) ;
  • Song, Bong-Geun (Depart. of Materials Science & Engineering, Seoul National University of Science and Technology) ;
  • Park, Jong-Ku (Depart. of Materials Science & Engineering, Seoul National University of Science and Technology) ;
  • Cho, So-Hye (Depart. of Materials Science & Engineering, Seoul National University of Science and Technology)
  • 박보인 (한국과학기술연구원 물질구조제어연구단) ;
  • 강계명 (한국과학기술연구원 물질구조제어연구단) ;
  • 지현석 (서울과학기술대학교 신소재공학과) ;
  • 송봉근 (서울과학기술대학교 신소재공학과) ;
  • 박종구 (서울과학기술대학교 신소재공학과) ;
  • 조소혜 (서울과학기술대학교 신소재공학과)
  • Received : 2012.09.24
  • Accepted : 2012.12.28
  • Published : 2012.12.31

Abstract

Photocatalytic properties of $TiO_2$ nanopowders has been received much attention due to their high potentials for environmental applications such as remediation of polluted environments. The $TiO_2$ nanopowders doped with metal or non-metal elements have been synthesized by variety methods such as flame method, chemical vapor synthesis, sol-gel, ion implantation, which affect a doping behavior in different ways resulting in different surface characteristics, leading to different photocatalytic activity. In addition to an effect of synthesis methods, the photocatalytic activity of $TiO_2$ nanopowders can be improved by subsequent heat-treatments. In this study, to obtain a highly efficient photocatalyst, we synthesized $TiO_2$ nanopowders doped with tungsten by the chemical vapor synthesis method (CVS) and determined their physical properties and photocatalytic activity, together with subsequent post-treatment in the range of $300^{\circ}C$ to $700^{\circ}C$.

티타니아($TiO_2$) 나노분말의 우수한 광촉매 활성은 이를 친환경 소재로서 많은 주목을 받도록 하였다. 특히, 최근 들어 이러한 $TiO_2$의 광촉매 활성을 향상시키기 위하여 $TiO_2$ 나노분말에 금속 혹은 비금속 원소를 도핑하는 방법이 널리 시도되고 있다. 화염법, 화학기상합성법, 졸-젤법, 공침법, 이온 주입법 등 다양한 방법들이 사용되고 있으며 합성법에 따라 원소들의 도핑 거동이 달라지므로 $TiO_2$의 전자구조 및 표면성질들이 합성법의 영향을 받게 되며 광촉매 활성 역시 달라진다. $TiO_2$의 광촉매 활성은 합성법 자체에 영향을 받는 것 외에 후속의 열처리에 의해서도 달라질 수 있다. 본 연구에서는 우수한 광촉매 활성을 가진 $TiO_2$ 나노분말 소재를 제조하기 위하여 화학기상합성법(chemical vapor synthesis, CVS)으로 텅스텐(W) 원소가 도핑된 $TiO_2$ 나노분말을 제조하고 물성 및 광촉매 특성을 조사하였다. 일부의 $TiO_2$ 나노분말은 $300^{\circ}C{\sim}700^{\circ}C$ 범위에서 열처리한 후 물성 및 광촉매 특성의 변화를 조사하였다.

Keywords

References

  1. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, "Environmental Applications of Semiconductor Photocatalysis", Chem. Rev. 95, 69 (1995) https://doi.org/10.1021/cr00033a004
  2. E. Pelizzetti, N. Serpone (Eds.), Homogeneous and Heterogeneous Photocatalysis, Reidel, Dordrecht, (1986)
  3. H. Park, H.S. Jie, B. Neppolian, K. Tsujimaru, J. P. Ahn, D. Y. Lee, J. K. Park, M. Anpo, "Preparation of Highly Active $TiO_{2}$ Nano-particle Photocatalysts by a Flame Aerosol Method for the Complete Oxidation of 2-Propanol", Top. Catal. 47, 166 (2008) https://doi.org/10.1007/s11244-007-9019-2
  4. K. Wilke and H. D. Breuer, "The Influence of Transition Metal Doping on the Physical and Photocatalytic Properties of Titania", J. Photo. and Photobio. A: Chem., 121, 49 (1999) https://doi.org/10.1016/S1010-6030(98)00452-3
  5. Y. Wang, H. Cheng, L. Zhang, Y. Hao, J. Ma, B. Xu, W. Li, "The Preparation, Characterization, Photoelectrochemical and Photocatalytic Properties of Lanthanide Metal-Ion-Doped $TiO_{2}$ Nanoparticles", J. Mol. Catal. A: Chem. 151, 205 (2000) https://doi.org/10.1016/S1381-1169(99)00245-9
  6. C.B. Almquist, P. Biswas "Role of Synthesis Method and Particle Size of Nanostructured $TiO_{2}$ on Its Photoactivity", J. Catal. 212, 145 (2002) https://doi.org/10.1006/jcat.2002.3783
  7. E. Pelizzetti, N. Serpone (Eds.), Photocatalysis and Environment: Trends and Applications, Willey, New York (1989)
  8. H. Park, H.S. Jie, K.-H. Chae, J.-K. Park, M. Anpo, D.-Y. Lee, "Improvement of Photocatalytic Behavior of Chemical-Vapor-Synthesized $TiO_{2}$ Nanopowders by Post-Heat Treatment", Curr. Appl. Phys. 8, 778 (2008) https://doi.org/10.1016/j.cap.2007.04.023
  9. C.H. Cho, D.K. Kim, D.H. Kim, "Photocatalytic Activity of Monodispersed Spherical $TiO_{2}$ Particles with Different Crystallization Routes", J. Am. Ceram. Soc. 86, 1138 (2003) https://doi.org/10.1111/j.1151-2916.2003.tb03437.x
  10. J.F. Porter, Y. Li, C.K. Chan, "The Effect of Calcination on the Microstructural Characteristics and Photoreactivity of Degussa P-25 $TiO_{2}$", J. Mater. Sci. 34, 1523 (1999) https://doi.org/10.1023/A:1004560129347
  11. J. Papp, S. Soled, K. Dwight, A. Wold, "Surface Acidity and Photocatalytic Activity of $TiO_{2}$, $WO_{3}$/$TiO_{2}$, and $MoO_{3}$/$TiO_{2}$ Photocatalysts" Chem. Mater. 6, 496 (1994) https://doi.org/10.1021/cm00040a026
  12. R. I. Bickley, T. Gonzalez-Carreno, J. S. Lees, L. Palmisano, R.J.D. Tilley. "A Structural Investigation of Titanium Dioxide Photocatalysts", J. Solid State Chem. 92, 178-190 (1991) https://doi.org/10.1016/0022-4596(91)90255-G