• Title/Summary/Keyword: Vapor phase growth

Search Result 272, Processing Time 0.023 seconds

Numerical Simulation of Bubble Motion During Nucleate Boiling (핵비등에서의 기포거동에 관한 수치해석)

    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.389-396
    • /
    • 2001
  • Direct numerical simulation of bubble growth and merger process on a single nucleation site during partial nucleate boiling is performed. The equations governing conservation of mass, momentum and energy are solved using a finite difference method combined with a level set method for capturing the vapor-liquid interface. The level set method is modified to include the effects of phase change at the interface and contact angle at the wall. Also, a simplified formulation for predicting the evaporative heat flux in a thin liquid micro-layer is developed and incorporated into the level set formulation. Based on the numerical results, the bubble growth and merger pattern and its effect on the heat transfer are discussed.

The Mechanism of Gold Deposition by Thermal Evaporation

  • Mark C. Barnes;Kim, Doh-Y.;Nong M. Hwang
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.127-142
    • /
    • 2000
  • The charged cluster model states that chemical vapor deposition (CVD) begins with gas phase nucleation of charged clusters followed by cluster deposition on a substrate surface to form a thin film. A two-chambered CVD system, separated by a 1-mm orifice, was used to study gold deposition by thermal evaporation in order to determine if the CCM applies in this case. At a filament temperature of 1523 and 1773 K, the presence of nano-meter sized gold clusters was found to be positive and the cluster size and size distribution increased with increasing temperature. Small clusters were found to be amorphous and they combined with clusters already deposited on a substrate surface to form larger amorphous clusters on the surface. This work revealed that gold thin films deposited on a mica surface are the result of the sticking of 4-10 nm clusters. The topography of these films was similar to those reported previously under similar conditions.

  • PDF

Characterizations of graded AlGaN epilayer grown by HVPE (HVPE 방법에 의해 성장된 graded AlGaN 에피층의 특성)

  • Lee, Chanbin;Jeon, Hunsoo;Lee, Chanmi;Jeon, Injun;Yang, Min;Yi, Sam Nyung;Ahn, Hyung Soo;Kim, Suck-Whan;Yu, Young Moon;Sawaki, Nobuhiko
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.2
    • /
    • pp.45-50
    • /
    • 2015
  • Compositionally graded AlGaN epilayer was grown by HVPE (hydride vapor phase epitaxy) on (0001) c-plane sapphire substrate. During the growth of graded AlGaN epilayer, the temperatures of source and the growth zone were set at $950^{\circ}C$ and $1145^{\circ}C$, respectively. The growth rate of graded AlGaN epilayer was about 100 nm/hour. The changing of Al contentes was investigated by field emission scanning electron microscope (FE-SEM) and energy dispersive spectroscopy (EDS). From the result of atomic force microscope (AFM), the average of roughness in 2 inch substrate of graded AlGaN epilayer was a few nanometers scale. X-ray diffraction (XRD) with the result that the AlGaN (002) peak ($Al_{0.74}Ga_{0.26}N$) and AlN (002) peak were appeared. It seems that the graded AlGaN epilayer was successfully grown by the HVPE method. From these results, we expect to use of the graded AlGaN epilayer grown by HVPE for the application of electron and optical devices.

The dependence of the properties of InP grown by chloride vapor phase epitaxy on the growth temperature and on the $PCl_3/H_2$ molar fraction (Chloride VPE법에 의한 InP 에피층 성장시 성장온도 및 $PCl_3/H_2$ 몰비에 따른 특성변화)

  • 김현수;신동석;최인훈
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.61-68
    • /
    • 1997
  • We examined the dependence of the growth of undoped InP epilayer by chloride vapor phase epitaxy on the growth temperature and on the $PCl_3$molar fraction. The growth temperature was varied from $620^{\circ}C$ to $650^{\circ}C$ and the $PCl_3$molar franction from $2.5{\times}10^{-2}$ to $4.5{\times}10^{-2}$. The undoped InP epilayer with hillock free surface was obtained at the growth temperature of $640^{\circ}C$ and at the PCl$_3$molar fraction of $3.0{\times}10^{-2}$. The surface morphology was improved with a decrease of the PCl$_3$molar fraction. The carrier concentration measured by Hall and ECV was less than $1{\times}10^{14}cm^{-3}$. The resistivity of the undoped InP epilayer, measured by using four probe method, showed a high value of <$3.0{\times}10^6{\Omega}\textrm{cm}$.

  • PDF

Fabrication and Its Characteristics of HgCdTe Infrared Detector (HgCdTe를 이용한 Infrared Detector의 제조와 특성)

  • 김재묵;서상희;이희철;한석룡
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.227-237
    • /
    • 1998
  • HgCdTe Is the most versatile material for the developing infrared devices. Not like III-V compound semiconductors or silicon-based photo-detecting materials, HgCdTe has unique characteristics such as adjustable bandgap, very high electron mobility, and large difference between electron and hole mobilities. Many research groups have been interested in this material since early 70's, but mainly due to its thermodynamic difficulties for preparing materials, no single growth technique is appreciated as a standard growth technique in this research field. Solid state recrystallization(SSR), travelling heater method(THM), and Bridgman growth are major techniques used to grow bulk HgCdTe material. Materials with high quality and purity can be grown using these bulk growth techniques, however, due to the large separation between solidus and liquidus line on the phase diagram, it is very difficult to grow large materials with minimun defects. Various epitaxial growth techniques were adopted to get large area HgCdTe and among them liquid phase epitaxy(LPE), metal organic chemical vapor deposition(MOCVD), and molecular beam epitaxy(MBE) are most frequently used techniques. There are also various types of photo-detectors utilizing HgCdTe materials, and photovoltaic and photoconductive devices are most interested types of detectors up to these days. For the larger may detectors, photovoltaic devices have some advantages over power-requiring photoconductive devices. In this paper we reported the main results on the HgCdTe growing and characterization including LPE and MOCVD, device fabrication and its characteristics such as single element and linear array($8{\times}1$ PC, $128{\times}1$ PV and 4120{\times}1$ PC). Also we included the results of the dewar manufacturing, assembling, and optical and environmental test of the detectors.

  • PDF

Generation of Charged Clusters and their Deposition in Polycrystalline Silicon Hot-Wire Chemical Vapor Deposition (열선 CVD 증착 다결정 실리콘에서 전하를 띈 클러스터의 생성 및 증착)

  • Lee, Jae-Ik;Kim, Jin-Yong;Kim, Do-Hyeon;Hwang, Nong-Moon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.561-566
    • /
    • 2005
  • Polycrystalline silicon films were deposited using hot wire CVD (HWCVD). The deposition of silicon thin films was approached by the theory of charged clusters (TCC). The TCC states that thin films grow by self-assembly of charged clusters or nanoparticles that have nucleated in the gas phase during the normal thin film process. Negatively charged clusters of a few nanometer in size were captured on a transmission electron microscopy (TEM) grid and observed by TEM. The negatively charged clusters are believed to have been generated by ion-induced nucleation on negative ions, which are produced by negative surface ionization on a tungsten hot wire. The electric current on the substrate carried by the negatively charged clusters during deposition was measured to be approximately $-2{\mu}A/cm^2$. Silicon thin films were deposited at different $SiH_4$ and $H_2$ gas mixtures and filament temperatures. The crystalline volume fraction, grain size and the growth rate of the films were measured by Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The deposit ion behavior of the si1icon thin films was related to properties of the charged clusters, which were in turn controlled by the process conditions. In order to verify the effect of the charged clusters on the growth behavior, three different electric biases of -200 V, 0 V and +25 V were applied to the substrate during the process, The deposition rate at an applied bias of +25 V was greater than that at 0 V and -200 V, which means that the si1icon film deposition was the result of the deposit ion of charged clusters generated in the gas phase. The working pressures had a large effect on the growth rate dependency on the bias appled to the substrate, which indicates that pressure affects the charging ratio of neutral to negatively charged clusters. These results suggest that polycrystalline silicon thin films with high crystalline volume fraction and large grain size can be produced by control1ing the behavior of the charged clusters generated in the gas phase of a normal HWCVD reactor.

  • PDF

The Observation of Scattering Patterns During Membrane Formation: Spinodal Decomposition and Nucleation Growth (스피노달 분해와 기핵성장에 따른 상분리 과정의 광산란 패턴의 관찰)

  • Kang, Jong-Seok;Huh, Hoon;Lee, Young-Moo
    • Membrane Journal
    • /
    • v.12 no.2
    • /
    • pp.97-106
    • /
    • 2002
  • Small angle light scattering (SALS) and field emission scanning electron microscope (FE-SEM) have been used to investigate the light scattering patterns with time evolved during water vapor quenching (relative humidity of 53 (${\pm}3)%$ at $26^{\circ}C$ of polysulfone (PSf)/NMP/Alcohol and chlorinated poly(vinyl chloride) (CPVC)/THF/Alcohol, respective1y. Time dependence of the position of the light scattering maximum was observed at PSf dope solutions, confirming spinodal decomposition (SD), while CPVC dope solutions showed a decreased scattered light intensity with an increased q-value, indicating nucleation & growth (NG). For the each system, domain growth rate in the intermediate and late stage of phase separation decreased with increasing the number of carbon of alcohol used as additive (non-solvent). Also, in the early stage for SD, the scattering intensity with time was in accordance with Cahn's linear theory of spinodal decomposition, regardless of types of non-solvent additive. Also, the size scales obtained by SALS were mutually compared to domain sizes gained by FE-SEM measurement. These observations of scattering pattern were much clearly observed for the 20PSf/70NMP/10n-butanol (w/w%) and agreed with the theoretical predictions for scattering patterns of each stage like the early, the intermediate, and the late stage of SD type phase separation. As the scattering maximum was observed at the larger angles (larger q) in the order of n-butanol > n-propanol > methanol > no alcohol, the pore size of final morphology decreased.

Numerical Analysis for Impurity Effects on Diffusive-convection Flow Fields by Physical Vapor Transport under Terrestrial and Microgravity Conditions: Applications to Mercurous Chloride (지상 및 미소중력 환경에서 물리적 승화법 공정에 미치는 불순물의 영향 분석: 염화제일수은에 대한 응용성)

  • Kim, Geug Tae;Kwon, Moo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.335-341
    • /
    • 2016
  • In this study, impurity effects on diffusive-convection flow fields by physical vapor transport under terrestrial and microgravity conditions were numerically analyzed for the mixture of $Hg_2Cl_2-I_2$ system. The numerical analysis provides the essence of diffusive-convection flow as well as heat and mass transfer in the vapor phase during the physical vapor transport through velocity vector flow fields, streamlines, temperature, and concentration profiles. The total molar fluxes at the crystal regions were found to be much more sensitive to both the gravitational acceleration and the partial pressure of component $I_2$ as an impurity. Our results showed that the solutal effect tended to stabilize the diffusive-convection flow with increasing the partial pressure of component $I_2$. Under microgravity conditions below $10^{-3}g_0$, the flow fields showed a one-dimensional parabolic flow structure indicating a diffusion-dominant mode. In other words, at the gravitational levels less than $10^{-3}g_0$, the effects of convection would be negligible.

Characteristics of L10 Ordered Fe50Pt50 Nanoparticles Synthesized by Chemical Vapor Condensation Process (화학기상응축(Chemical Vapor Condensation)공정으로 제조한 L10규칙상 Fe50Pt50 나노분말의 특성)

  • Lee, Gyeong-Mo;Yu, Ji-Hun;Lee, Dong-Won;Kim, Byung-Kee;Kim, Hyeok-Don;Jang, Tae-Suk
    • Journal of Powder Materials
    • /
    • v.14 no.5
    • /
    • pp.281-286
    • /
    • 2007
  • Ordered $L1_0$ to FePt nanoparticles are strong candidates for high density magnetic data storage media because the $L1_0$ phase FePt has a very high magnetocrystalline anisotropy $(K_u{\sim}6.6-10{\times}10^7erg/cm^3)$, high coercivity and chemical stability. In this study, the ordered $L1_0$ FePt nanoparticles were successfully fabricated by chemical vapor condensation process without a post-annealing process which causes severe particle growth and agglomeration. The $Fe_{50}Pt_{50}$ nanopowder was obtained when the mixing ratio of Fe(acac) and Pt(arac) was 2.5 : 1. And the synthesized FePt nanoparticles were very fine and spherical shape with a narrow size distribution. The average particle size of the powder tended to increase from 5 nm to 10 nm with increasing reaction temperature from $800^{\circ}C$ to $1000^{\circ}C$. Characterisitcs of FePt nanopowder were investigated in terms of process parameters and microstructures.

Growth of Organic/Inorganic MAPbI3 Perovskite Thin Films via Chemical Vapor Deposition (화학 기상 증착법을 이용한 유/무기 MAPbI3 페로브스카이트 박막 성장)

  • Jung, Jang-Su;Eom, Jiho;Pammi, S.V.N.;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.315-320
    • /
    • 2020
  • Methylammonium lead iodide (MAPbI3) thin films were grown at low temperatures on glass substrates via 3-zone chemical vapor deposition. Lead iodide (PbI2) and lead bis (dipivaloylmethanate) [Pb(dpm)2] precursors were used as lead sources. Due to the high sublimation temperature (~400℃) of the PbI2 precursor, a low substrate temperature could not be constantly maintained. Therefore, MAPbI3 thin films degraded into the PbI2 phase. In contrast, for the Pb(dpm)2 precursor, a substrate temperature of ~120℃ was maintained because the sublimation temperature of Pb(dpm)2 is as low as 130℃ at a high vapor pressure. As a result, high-quality MAPbI3 thin films were successfully grown on glass substrates using Pb(dpm)2. The rms (root-mean-square) roughness of MAPbI3 thin films formed from Pb(dpm)2 was as low as ~19.2 nm, while it was ~22.7 nm for those formed using PbI2. The grain size of the films formed from Pb(dpm)2 was as large as approximately 350 nm.