Browse > Article
http://dx.doi.org/10.14478/ace.2016.1028

Numerical Analysis for Impurity Effects on Diffusive-convection Flow Fields by Physical Vapor Transport under Terrestrial and Microgravity Conditions: Applications to Mercurous Chloride  

Kim, Geug Tae (Department of Advanced Materials and Chemical Engineering, Hannam University)
Kwon, Moo Hyun (Department of Energy Engineering, Woosuk University)
Publication Information
Applied Chemistry for Engineering / v.27, no.3, 2016 , pp. 335-341 More about this Journal
Abstract
In this study, impurity effects on diffusive-convection flow fields by physical vapor transport under terrestrial and microgravity conditions were numerically analyzed for the mixture of $Hg_2Cl_2-I_2$ system. The numerical analysis provides the essence of diffusive-convection flow as well as heat and mass transfer in the vapor phase during the physical vapor transport through velocity vector flow fields, streamlines, temperature, and concentration profiles. The total molar fluxes at the crystal regions were found to be much more sensitive to both the gravitational acceleration and the partial pressure of component $I_2$ as an impurity. Our results showed that the solutal effect tended to stabilize the diffusive-convection flow with increasing the partial pressure of component $I_2$. Under microgravity conditions below $10^{-3}g_0$, the flow fields showed a one-dimensional parabolic flow structure indicating a diffusion-dominant mode. In other words, at the gravitational levels less than $10^{-3}g_0$, the effects of convection would be negligible.
Keywords
microgravity; crystal growth;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 W. M. B. Duval, N. B. Singh, and M. E. Glicksman, Physical vapor transport of mercurous chloride crystals: design of a microgravity experiment, J. Cryst. Growth, 174, 120-129 (1997).   DOI
2 E. N. Kolesnikova, Yu. A. Polovko, V. S. Yuferev, and A. I. Zhmakin, Influence of coriolis force on thermal convection and impurity segregation during crystal growth under microgravity, J. Cryst. Growth, 180, 578-586 (1997).   DOI
3 F. Otalora and J. M. Garcia-Ruiz, Crystal growth studies in microgravity with the APCF I. Computer simulation of transport dynamics, J. Cryst. Growth, 182, 141-154 (1997).   DOI
4 J. M. Garcia-Ruiz and F. Otalora, Crystal growth studies in microgravity with the APCF II. Image analysis studies, J. Cryst. Growth, 182, 155-167 (1997).   DOI
5 C. W. Lan and C. Y. Tu, Three-dimensional analysis of flow and segregation control by slow rotation for Bridgman crystal growth in microgravity, J. Cryst. Growth, 237, 1881-1885 (2002).
6 S. Maruyama, K. Ohno, A. Komiya, and S. Sakai, Description of the adhesive crystal growth under normal and micro-gravity conditions employing experimental and numerical approaches, J. Cryst. Growth, 245, 278-288 (2002).   DOI
7 M. Catauro, F. Bollino, and F. Papale, Response of SAOS-2 cells to simulated microgravity and effect of biocompatible sol-gel hybrid coatings, Acta Astronaut., 122, 237-242 (2016).   DOI
8 K. Harth, T. Trittel, K. May, S. Wegner, and R. Stannarius, Three-dimensional (3D) experimental realization and observation of a granular gas in microgravity, Adv. Space Res., 55, 1901-1912 (2015).   DOI
9 K. Nishino, T. Yano, H. Kawamura, S. Matsumoto, I. Ueno, and M. K. Ermakov, Instability of thermocapillary convection in long liquid bridges of high Prandtl number fluids in microgravity, J. Cryst. Growth, 420, 57-63 (2015).   DOI
10 Y. Yang, L. M. Pan, and J.-J. Xu, Effects of microgravity on Marangoni convection and growth characteristic of a single bubble, Acta Astronaut., 100, 129-139 (2014).   DOI
11 D. E. Melinikov, V. Shevtsova, T. Yano, and K. Nishino, Modeling of the experiments on the Marangoni convection in liquid bridges in weightlessness for a wide range of aspect ratios, Int. J. Heat Mass Transf., 87, 119-127 (2015).   DOI
12 C. Konishi and I. Mudawar, Review of flow boiling and critical heat flux in microgravity, Int. J. Heat Mass Transf., 80, 469-493 (2015).   DOI
13 L. Carotenuto, Crystal growth from the vapour phase in microgravity, Prog. Cryst. Growth Charact. Mater., 48/49, 166-188 (2004).   DOI
14 A. Yeckel and J. J. Derby, Dynamics of three-dimensional convection in microgravity crystal growth: G-jitter with steady magnetic fields, J. Cryst. Growth, 263, 40-52 (2004).   DOI
15 Z. Zeng, H. Mizuseki, K. Simamura, T. Fukuda, K. Higashino, and Y. Kawazoe, Three-dimensional oscillatory thermocapillary convection in liquid bridge under microgravity, Int. J. Heat Mass Transf., 44, 3765-3774 (2001).   DOI
16 T. Maekawa, Y. Hiraoka, K. Ikegami, and S. Matsumoto, Numerical modelling and analysis of binary compound semiconductor growth under microgravity conditions, J. Cryst. Growth, 229, 605-609 (2001).   DOI
17 Y. K. Lee and G. T. Kim, Effects of convection on physical vapor transport of $Hg_{2}Cl_{2}$ in the presence of Kr-Part I: under microgravity environments, J. Korean Cryst. Growth Cryst. Technol., 23, 20-26 (2013).   DOI
18 D. R. Liu, N. Mangelinck-Noel, C. A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen-Thi, and B. Billia, Simulation of directional solidification of refined Al-7wt.% Si alloys- Comparison with benchmark microgravity experiments, Acta Mater., 93, 24-37 (2015).   DOI
19 P. A. Tebbe, S. K. Loyalka, and W. M. B. Duval, Finite element modeling of asymmetric and transient flow fields during physical vapor transport, Finite Elem. Anal. Des., 40, 1499-1519 (2004).   DOI
20 N. B. Singh, M. Gottlieb, G. B. Brandt, A. M. Stewart, R. Mazelsky, and M. E. Glicksman, Growth and characterization of mercurous halide crystals: mercurous bromide system, J. Cryst. Growth, 137, 155-160 (1994).   DOI
21 G. T. Kim, Effects of aspect ratio on diffusive-convection during physical vapor transport of $Hg_{2}Cl_{2}$ with impurity of NO, Appl. Chem. Eng., 26, 746-752 (2015).   DOI
22 G. T. Kim and M. H. Kwon, Effects of solutally dominant convection on physical vapor transport for a mixture of $Hg_{2}Br_{2}$ and $Br_{2}$ under microgravity environments, Korean Chem. Eng. Res., 52, 75-80 (2014).   DOI
23 D. W. Greenwell, B. L. Markham, and F. Rosenberger, Numerical modeling of diffusive physical vapor transport in cylindrical Ampoules, J. Cryst. Growth, 51, 413-425 (1981).   DOI
24 B. L. Markham, D. W. Greenwell, and F. Rosenberger, Numerical modeling of diffusive-convective physical vapor transport in cylindrical vertical ampoules, J. Cryst. Growth, 51, 426-437 (1981).   DOI
25 K. Kinoshita, Y. Arai, Y. Inatomi, T. Tsukada, S. Adachi, H. Miyata, R. Tanaka, J. Yoshikawa, T. Kihara, H. Tomioka, H. Shibayama, Y. Kubota, Y. Warashina, Y. Sasaki, Y. Ishizuka, Y. Harada, S. Wada, T. Ito, M. Takayanagi, and S. Yoda, Growth of a $Si_{0.50}Ge_{0.50}$ crystal by the traveling liquids-zone (TLZ) method in microgravity, J. Cryst. Growth, 388, 12-16 (2014).   DOI
26 K. W. Benz and P. Dold, Crystal growth under microgravity: present results and future prospects towards the international space station, J. Cryst. Growth, 237-239, 1638-1645 (2002).   DOI
27 P. Fontana, J. Schefer, and D. Pettit, Characterization of sodium chloride crystals grown in microgravity, J. Cryst. Growth, 324, 207-211 (2011).   DOI
28 M. Nobeoka, Y. Takagi, Y. Okano, Y. Hayakawa, and S. Dost, Numerical simulation of InGaSb crystal growth by temperature gradient method under normal- and micro-gravity fields, J. Cryst. Growth, 385, 66-71 (2014).   DOI
29 K. Abe, S. Sumioka, K.-I. Sugioka, M. Kubo, T. Tsukada, K. Kinoshita, Y. Arai, and Y. Inatomi, Numerical simulation of SiGe crystal growth by the traveling llquidus-zone method in a microgravity environment, J. Cryst. Growth, 402, 71-77 (2014).   DOI
30 C. Stelian and T. Duffar, Influence of rotating magnetic fields on THM growth of CdZnTe crystals under microgravity and ground conditions, J. Cryst. Growth, 429, 19-26 (2015).   DOI
31 Z. Li, J. H. Peterson, A. Yeckel, and J. J. Derby, Analysis of the effects of a rotating magnetic field on the growth of cadmium zinc telluride by the traveling heater method under microgravity conditions, J. Cryst. Growth, Doi: 10.1016/j.jcrysgro.2015.12.046.   DOI