• Title/Summary/Keyword: Vapor phase growth

Search Result 272, Processing Time 0.023 seconds

Effects of oxygen additive on structural properties and metal/diamond junction characteristics of nano-crystalline diamond thin films (산소첨가가 나노결정 다이아몬드 박막의 구조적 물성 및 금속과의 접합특성에 미치는 영향)

  • Choi, Sung-Ho;Park, Jae-Hyun;Park, Chang-Kyun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1700-1702
    • /
    • 2004
  • Diamond films including nanocrystallites are grown by microwave plasma chemical vapor deposition using $O_2$ additives and negative substrate bias at growth step. Effects of growth parameters on film properties are characterized by Raman spectra, SEM, and AFM images. It is found that the surface roughness and the microstructure of grown films can be controlled by changing $O_2$ gas ratio. The I-V characteristics are also investigated in terms of growth conditions of diamond films. The surface roughness and the $sp^2$ phase of the grown diamond films turn out to be crucial factors for reducing leakage currents at diamond/metal interfaces.

  • PDF

Optimization of Selective Epitaxial Growth of Silicon in LPCVD

  • Cheong, Woo-Seok
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.503-509
    • /
    • 2003
  • Selective epitaxial growth (SEG) of silicon has attracted considerable attention for its good electrical properties and advantages in building microstructures in high-density devices. However, SEG problems, such as an unclear process window, selectivity loss, and nonuniformity have often made application difficult. In our study, we derived processing diagrams for SEG from thermodynamics on gas-phase reactions so that we could predict the SEG process zone for low pressure chemical vapor deposition. In addition, with the help of both the concept of the effective supersaturation ratio and three kinds of E-beam patterns, we evaluated and controlled selectivity loss and non-uniformity in SEG, which is affected by the loading effect. To optimize the SEG process, we propose two practical methods: One deals with cleaning the wafer, and the other involves inserting dummy active patterns into the wide insulator to prevent the silicon from nucleating.

  • PDF

Selective growth of micro scale GaN initiated on top of stripe GaN

  • Lee, J.W.;Jo, D.W.;Ok, J.E.;Yun, W.I.;Ahn, H.S.;Yang, M.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.93-95
    • /
    • 2012
  • We report on the growth and characterization of the nano- and micro scale GaN structures selectively grown on the vertex of GaN stripes using the metal organic vapor phase epitaxy method and conventional photolithography technique. The triangular shaped nano- and micro GaN structures which have semi-polar {11-22} facets were formed only on the vertex of the lower GaN stripes. Crystalline defects reduction was observed by transmission electron microscopy for upper GaN stripes. We also have grown the InGaN/GaN multi-quantum well structures on the semi-polar facets of the upper GaN stripes. Cathodoluminescence images were taken at 366, 412 and 555 nm related to GaN band edge, InGaN/GaN layer and defects, respectively.

Selective growth of GaN nanorods on the top of GaN stripes (GaN stripe 꼭지점 위의 GaN 나노로드의 선택적 성장)

  • Yu, Yeonsu;Lee, Junhyeong;Ahn, Hyungsoo;Shin, Kisam;He, Yincheng;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.145-150
    • /
    • 2014
  • GaN nanorods were grown on the apex of GaN stripes by three dimensional selective growth method. $SiO_2$ mask was partially removed only on the apex area of the GaN stripes by an optimized photolithography for the selective growth. Metallic Au was deposited only on the apex of the GaN stripes and a selective growth of GaN nanorods was followed by a metal organic vapor phase epitaxy (MOVPE). We confirmed that the shape and size of the GaN nanorods depend on growth temperature and flow rates of group III precursor. GaN nanorods were grown having a taper shape which have sharp tip and triangle-shaped cross section. From the TEM result, we confirmed that threading dislocations were rarely observed in GaN nanorods because of the very small contact area for the selective growth. Stacking faults which might be originated from a difference of the crystal facet directions between the GaN stripe and the GaN nanorods were observed in the center area of the GaN nanorods.

Growth of α-Ga2O3 Epitaxial Films on Al2O3 by Halide Vapor Pressure Epitaxy

  • Lee, Daejang;Cha, An-Na;Park, Junseong;Noh, Hogyun;Moon, Youngboo;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.113-118
    • /
    • 2019
  • In this study, we investigated the growth of single-crystallinity α-Ga2O3 thin films on c-plane sapphire substrates using halide vapor pressure epitaxy. We also found the optimal growth conditions to suppress the phase transition of α-Ga2O3. Our results confirmed that the growth temperature and partial pressure of the reactive gas greatly influenced the crystallinity. The optimal growth temperature range was about 460~510℃, and the α-Ga2O3 thin films with the highest crystallinity were obtained at a III/VI ratio of 4. The thickness and surface morphology of the thin films was observed by scanning electron microscopy. The film thickness was 6.938 ㎛, and the full width at half maximum of the ω-2θ scan rocking curve was as small as 178 arcsec. The optical band gap energy obtained was 5.21 eV, and the films were almost completely transparent in the near-ultraviolet and visible regions. The etch pit density was found to be as low as about 6.0 × 104 cm-2.

Growth and thermal annealing of polycrystalline Ga2O3/diamond thin films on Si substrates (다결정 산화갈륨/다이아몬드 이종 박막 성장 및 열처리 효과 연구)

  • Seo, Ji-Yeon;Kim, Tae-Gyu;Shin, Yun-Ji;Jeong, Seong-Min;Bae, Si-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.233-239
    • /
    • 2021
  • In this study, Ga2O3/diamond layers were grown on Si substrates to improve the thermal characteristics of Ga2O3 materials. Firstly, diamond thin film was grown on Si substrates by hot-filament chemical vapor deposition. Afterward, Ga2O3 layer was grown in the growth temperature range of from 450~600℃ by mist chemical vapor deposition. We found that layer separation happens at the Ga2O3/diamond interface at the growth temperature of 500℃. This is attributed to the different thermal expansion coefficient of the mixture of amorphous and crystalline structures during cooling process. Therefore, this study might contribute to the heat-sink-layer bonded power semiconductor applications by stabilizing the thermal properties at Ga2O3/diamond interface.

High-sensitivity ZnO gas Sensor with a Sol-gel-processed SnO2 Seed Layer (Sol-Gel 방법으로 제작된 SnO2 seed layer를 적용한 고반응성 ZnO 가스 센서)

  • Kim, Sangwoo;Bak, So-Young;Han, Tae Hee;Lee, Se-Hyeong;Han, Ye-ji;Yi, Moonsuk
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.420-426
    • /
    • 2020
  • A metal oxide semiconductor gas sensor is operated by measuring the changes in resistance that occur on the surface of nanostructures for gas detection. ZnO, which is an n-type metal oxide semiconductor, is widely used as a gas sensor material owing to its high sensitivity. Various ZnO nanostructures in gas sensors have been studied with the aim of improving surface reactions. In the present study, the sol-gel and vapor phase growth techniques were used to fabricate nanostructures to improve the sensitivity, response, and recovery rate for gas sensing. The sol-gel method was used to synthesize SnO2 nanoparticles, which were used as the seed layer. The nanoparticles size was controlled by regulating the process parameters of the solution, such as the pH of the solution, the type and amount of solvent. As a result, the SnO2 seed layer suppressed the aggregation of the nanostructures, thereby interrupting gas diffusion. The ZnO nanostructures with a sol-gel processed SnO2 seed layer had larger specific surface area and high sensitivity. The gas response and recovery rate were 1-7 min faster than the gas sensor without the sol-gel process. The gas response increased 4-24 times compared to that of the gas sensor without the sol-gel method.

Highly sensitive and selective NO2 gas sensor at low temperature based on SnO2 nanowire network (SnO2 나노와이어를 이용한 저온동작 고감도 고선택성 NO2 가스센서)

  • Kim, Yoojong;Bak, So-Young;Lee, Jeongseok;Lee, Se-Hyeong;Woo, Kyoungwan;Lee, Sanghyun;Yi, Moonsuk
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2021
  • In this paper, methods for improving the sensitivity of gas sensors to NO2 gas are presented. A gas sensor was fabricated based on an SnO2 nanowire network using the vapor-phase-growth method. In the gas sensor, the Au electrode was replaced with a fluorinedoped tin oxide (FTO) electrode, to achieve high sensitivity at low temperatures and concentrations. The gas sensor with the FTO electrode was more sensitive to NO2 gas than the sensor with the Au electrode: notably, both sensors were based on typical SnO2 nanowire network. When the Au electrode was replaced by the FTO electrode, the sensitivity improved, as the contact resistance decreased and the surface-to-volume ratio increased. The morphological features of the fabricated gas sensor were characterized in detail via field-emission scanning electron microscopy and X-ray diffraction analysis.

Effects of antimony addition on growth of InGaN nano-structures by mixed-source HVPE (혼합소스 HVPE 방법에 의한 InGaN 나노구조의 성장에 있어서 Sb 첨가의 영향)

  • Ok, Jin-Eun;Jo, Dong-Wan;Jeon, Hun-Soo;Lee, Ah-Reum;Lee, Gang-Suok;Cho, Young-Ji;Kim, Kyung-Hwa;Chang, Ji-Ho;Ahn, Hyung-Soo;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.113-116
    • /
    • 2010
  • We report on the growth and characteristics of the structural and optical properties of InGaN nano-structures doped with antimony (Sb) as a catalyst. The use of catalyst has been explored to modify the growth and defect generation during strained layer heteroepitaxial growth. We performed the growth of the InGaN nano-structures on c-sapphire substrates using mixed-source hydride vapor phase epitaxy (HVPE). The characteristic of samples was measured by scanning electron microscope (SEM) and photoluminescence (PL). The aligning direction of c-axis of the InGaN nano-structures was changed from vertical to parallel or inclined to the surface of substrates when the Sb was added as a catalyst. The indium composition was estimated about 3.2% in both cases of with or without the addition of Sb in the InxGal-xN structures. From the results of InGaN nano-structures formed with the addition of Sb, we can expect the performance of optical devices would be more improved by reduced piezo-electric field if we use the InGaN nano-structures of which c-axes are aligned parallel to the substrates as an active layer.

GaN epitaxy growth by low temperature HYPE on $CoSi_2$ buffer/Si substrates (실리콘 기판과 $CoSi_2$ 버퍼층 위에 HVPE로 저온에서 형성된 GaN의 에피텍셜 성장 연구)

  • Ha, Jun-Seok;Park, Jong-Sung;Song, Oh-Sung;Yao, T.;Jang, Ji-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.4
    • /
    • pp.159-164
    • /
    • 2009
  • We fabricated 40 nm-thick cobalt silicide ($CoSi_2$) as a buffer layer, on p-type Si(100) and Si(111) substrates to investigate the possibility of GaN epitaxial growth on $CoSi_2$/Si substrates. We deposited GaN using a HVPE (hydride vapor phase epitaxy) with two processes of process I ($850^{\circ}C$-12 minutes + $1080^{\circ}C$-30 minutes) and process II ($557^{\circ}C$-5 minutes + $900^{\circ}C$-5 minutes) on $CoSi_2$/Si substrates. An optical microscopy, FE-SEM, AFM, and HR-XRD (high resolution X-ray diffractometer) were employed to determine the GaN epitaxy. In case of process I, it showed no GaN epitaxial growth. However, in process II, it showed that GaN epitaxial growth occurred. Especially, in process II, GaN layer showed selfaligned substrate separation from silicon substrate. Through XRD ${\omega}$-scan of GaN <0002> direction, we confirmed that the combination of cobalt silicide and Si(100) as a buffer and HVPE at low temperature (process II) was helpful for GaN epitaxy growth.