Browse > Article
http://dx.doi.org/10.6117/kmeps.2019.26.4.113

Growth of α-Ga2O3 Epitaxial Films on Al2O3 by Halide Vapor Pressure Epitaxy  

Lee, Daejang (UJL Inc.)
Cha, An-Na (School of Applied Chemical Engineering, Chonnam National University)
Park, Junseong (School of Applied Chemical Engineering, Chonnam National University)
Noh, Hogyun (School of Applied Chemical Engineering, Chonnam National University)
Moon, Youngboo (UJL Inc.)
Ha, Jun-Seok (School of Applied Chemical Engineering, Chonnam National University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.26, no.4, 2019 , pp. 113-118 More about this Journal
Abstract
In this study, we investigated the growth of single-crystallinity α-Ga2O3 thin films on c-plane sapphire substrates using halide vapor pressure epitaxy. We also found the optimal growth conditions to suppress the phase transition of α-Ga2O3. Our results confirmed that the growth temperature and partial pressure of the reactive gas greatly influenced the crystallinity. The optimal growth temperature range was about 460~510℃, and the α-Ga2O3 thin films with the highest crystallinity were obtained at a III/VI ratio of 4. The thickness and surface morphology of the thin films was observed by scanning electron microscopy. The film thickness was 6.938 ㎛, and the full width at half maximum of the ω-2θ scan rocking curve was as small as 178 arcsec. The optical band gap energy obtained was 5.21 eV, and the films were almost completely transparent in the near-ultraviolet and visible regions. The etch pit density was found to be as low as about 6.0 × 104 cm-2.
Keywords
HVPE; ${\alpha}-Ga_2O_3$; $Al_2O_3$; Heteroepitaxy; Single crystal;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, "Ultrawide- Bandgap Semiconductors: Research Opportunities and Challenges", Adv. Electron. Mater. 4, 1600501 (2018).   DOI
2 S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, "A review of $Ga_2O_3$ materials, processing, and devices", Appl. Phys. Rev., 5, 011301 (2018).   DOI
3 M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, "Recent progress in $Ga_2O_3$ power devices", Semicond. Sci. Technol., 31, 34001 (2016).   DOI
4 J.-H. Lee, D.-H. Jung, S.-J. Oh, and J.-P. Jung, "High Technology and Latest Trends of WBG Power Semiconductors", J. Microelectron. Packag. Soc., 25(4), 17 (2018).   DOI
5 K.-H. Kim, and S.-H. Choa, "Recent Overview on Power Semiconductor Devices and Package Module Technology", J. Microelectron. Packag. Soc. 26(3), 15 (2019).
6 M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, "Gallium oxide ($Ga_2O_3$) metal-semiconductor field-effect transistors on single-crystal ${\beta}$-$Ga_2O_3$ (010) substrates", Appl. Phys. Lett., 100, 013504 (2012).   DOI
7 K. Sasaki, A. Kuramata, T. Masui, E. G. Víllora, K. Shimamura, and S. Yamakoshi, "Device-quality ${\beta}$-$Ga_2O_3$ epitaxial films fabricated by ozone molecular beam epitaxy", Appl. Phys. Express., 5, 035502 (2012).   DOI
8 M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, "Depletion-mode $Ga_2O_3$ metal-oxide-semiconductor fieldeffect transistors on ${\beta}$-$Ga_2O_3$ (010) substrates and temperature dependence of their device characteristics", Appl. Phys. Lett., 103, 123511 (2013).   DOI
9 R. Roy, V. G. Hill, and E. F. Osborn, "Polymorphism of $Ga_2O_3$ and the System $Ga_2O_3$-$H_2O$", J. Am. Chem. Soc., 74, 719 (1952).   DOI
10 Y. Oshima, E.G. Víllora, and K. Shimamura, "Halide vapor phase epitaxy of twin-free ${\alpha}$- $Ga_2O_3$ on sapphire (0001) substrates", Appl. Phys. Express., 8, 055501 (2015).   DOI
11 S. Fujita, and K. Kaneko, "Epitaxial growth of corundumstructured wide band gap III-oxide semiconductor thin films", J. Cryst. Growth., 401, 588 (2014).   DOI
12 J. J. Tietjen, and J. A. Amic, "The preparation and properties of vapor?deposited epitaxial GaAs1- x P x using arsine and phosphine", J. Electrochem. Soc., 113, 724 (1966).   DOI
13 M.-G. Ju, X. Wang, W. Liang, Y. Zhao, and C. Li, "Tuning the energy band-gap of crystalline gallium oxide to enhance photocatalytic water splitting: mixed-phase junctions", J. Materials Chem. A., 2, 17005 (2014).   DOI
14 Y. Oshima, E.G. Víllora, Y. Matsushita, S. Yamamoto, and K. Shimamura, "Epitaxial growth of phase-pure ${\varepsilon}$-$Ga_2O_3$ by halide vapor phase epitaxy", J. Appl. Phys., 118, 085301 (2015).   DOI
15 R. Kumaran, T. Tiedje, S. E. Webster, S. Penson, and W. Li, "Epitaxial Nd-doped ${\alpha}-(Al_1-_xGa_x)_2O_3$ films on sapphire for solid-state waveguide lasers", Opt. Lett., 35, 3793 (2010).   DOI
16 Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, "Sol-gel prepared thin films for ultraviolet photodetectors", Appl. Phys. Lett., 90 (2007) 031912.   DOI
17 K. Kaneko, H. Kawanowa, H. Ito, and S. Fujita, "Evaluation of Misfit Relaxation in ${\alpha}$-$Ga_2O_3$ Epitaxial Growth on ${\alpha}$-$Ga_2O_3$ Substrate", Jpn. J. Appl. Phys., 51, 020201 (2012).
18 F. Vigue, P. Vennegues, S. Vezian, M. Laugt, and J.-P. Faurie, "Defect characterization in ZnO layers grown by plasmaenhanced molecular-beam epitaxy on (0001) sapphire substrates", Appl. Phys. Lett., 79, 194 (2001).   DOI
19 H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q.T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, and A. Kuramata, "Homoepitaxial growth of ${\beta}$-$Ga_2O_3$ layers by halide vapor phase epitaxy", Appl. Phys. Express., 8, 015503 (2014).   DOI
20 T. Oshima, T. Okuno, and S. Fujita, "$Ga_2O_3$ thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors", Jpn. J. Appl. Phys., 46, 7217 (2007).   DOI
21 K. Akaiwa, and S. Fujita, "Electrical conductive corundumstructured ${\alpha}$-$Ga_2O_3$ thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition", Jpn. J. Appl. Phys., 51, 070203 (2012).