• Title/Summary/Keyword: Vapor flow

Search Result 973, Processing Time 0.029 seconds

Numerical Analysis of Cavitation Flow Around Hydrofoils (3차원 수중익형 주위의 캐비테이션 유동 전산해석)

  • Kim, S.H.;Koo, T.K.;Park, W.G.;Kim, D.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2008
  • The cavitating flow simulation is of practical importance for many engineering systems, such as pump, turbine, nozzle, Infector, etc. In the present work, a solver for two-phase flows has been developed and applied to simulate the cavitating flows past hydrofoils. The governing equation is the two-phase Navier-Stokes equation, comprised of the continuity equation of liquid and vapor phase. The momentum and energy equation is in the mixture phase. The solver employs an implicit, dual time, preconditioned algorithm using finite difference scheme in curvilinear coordinates. An experimental data and other numerical data were compared with the present results to validate the present solver. It is concluded that the present numerical code has successfully accounted for two-phase Navier-Stokes model of cavitation flow.

Experimental Observations of Boiling and Flow Evolution in a Coiled Tube

  • Ye, P.;Peng, X.F.;Wu, H.L.;Meng, M.;Gong, Y. Eric
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • A sequence of visually experimental observations was conducted to investigate the flow boiling and two-phase flow in a coiled tube. Different boiling modes and bubble dynamical evolutions were identified for better recognizing the phenomena and understanding the two-phase flow evolution and heat transfer mechanisms. The dissolved gases and remained vapor would serve as foreign nucleation sites, and together with the effect of buoyancy, centrifugal force and liquid flow, these also induce very different flow boiling nucleation, boiling modes, bubble dynamical behavior, and further the boiling heat transfer performance. Bubbly flow, plug flow, slug flow, stratified/wavy flow and annular flow were observed during the boiling process in the coiled tube. Particularly the effects of flow reconstructing and thermal non-equilibrium release in the bends were noted and discussed with the physical understanding. Coupled with the effects of the buoyancy, centrifugal force and inertia or momentum ratio of the two fluids, the flow reconstructing and thermal non-equilibrium release effects have critical importance for flow pattern in the bends and flow evolution in next straight sections.

Flow Condensation Heat Transfer Characteristic of Hydrocarbon Refrigerants and DME in Horizontal Plain Tube (탄화수소계 냉매들과 DME의 수평 평활관내 흐름 응축 열전달 특성)

  • Park, Ki-Jung;Lee, Min-Hang;Park, Hyun-Shin;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.545-554
    • /
    • 2007
  • Flow condensation heat transfer coefficients(HTCs) of R22, propylene, propane, DME and isobutane are measured on a horizontal plain tube. The main test section in the experimental flow loop is made of a plain copper tube of 9.52 mm outside diameter and 530 mm length. The refrigerant is cooled by passing cold water through an annulus surrounding the test section. Tests are performed at a fixed refrigerant saturation temperature of $40{\pm}0.2^{\circ}C$ with mass fluxes of 100, 200, $300kg/m^2s$ and heat flux of $7.3\sim7.7kW/m^2$. The data are obtained in the vapor Quality range of $10\sim90%$. Test results show that at same mass flux the flow condensation HTCs of propylene, propane, DME and isobutane are higher than those of R22 by up to 46.8%, 53.3%, 93.5% and 61.6% respectively. Also well-known correlations developed based upon conventional fluorocarbon refrigerants predict the present data within a mean deviation of 30%. Finally, the pressure drop increase as the mass flux and Quality increase and isobutane shows the highest pressure drop due to its lowest vapor pressure among the fluids tested.

A study on effect of heat transfer of condensation including noncondensable gas over a flat plate (불응축가스가 평판위 응축열전달에 미치는 영향에 관한 연구)

  • 양대일;정형호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • In present paper, mass transfer over a flat plate with film condensation including noncondesable gas is analyzed with the help of similarity methods. Couette flow was assumed in liquid film and boundary-layer approximation was used in the ambient flow. Governing equations were transformed into the ordinary differential equtions by the similarity methods. Runge-Kutta and shooting method were used in order to fine the effect of mass transfer on the velocity and concentrations at the liquid-vapor interface.

  • PDF

The crystallinity of silicon films deposited at low temperatures with Remote Plasma Enhanced Chemical Vapor Deposition(RPECVD) (원거리 플라즈마 화학증착을 이용한 규소 박막의 결정성)

  • 김동환;이일정;이시우
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.1-6
    • /
    • 1995
  • Polycrystalline Si films have been used in many applications such as thin film transistors(TFT), image sensors and LSI applications. In this research deposition of Si films at low temperatures with remote plasma enhanced CVD from Si2H6-SiF4-H2 on SiO2 was studied and their crystallinity was investigated. It was condluded that growth of crystalline Si films was favorable with (1) low Si2H6 flow rates, (2) moderate plasma power, (3) moderate SiF4 flow rates, (4) moderate substrate temperature, and (5) suitable method of surface cleaning.

  • PDF

Numerical Study of Bubble Growth in a Microchannel (미세관에서의 기포성장에 대한 수치적 연구)

  • Seo, Ki-Chel;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1891-1896
    • /
    • 2003
  • The bubble motion during nucleate boiling in a microchannel is investigated numerically. The liquid-vapor interface is tracked by a level set method which is modified to include the effects of phase change at the interface and contact angle at the wall. The computations are made for various channel sizes, liquid flow rates, and contact angles. Based on the numerical results, the bubble growth pattern and its effect on the flow and heat transfer are discussed.

  • PDF

SPC Growth of Si Thin Films Preapared by PECVD (PECVD 방법으로 증착한 Si박막의 SPC 성장)

  • 문대규;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.42-45
    • /
    • 1992
  • The poly silicon thin films were prepared by solid phase crystallization at 600$^{\circ}C$ of amorphous silicon films deposited on Corning 7059 glass and (100) silicon wafer with thermally grown SiO$_2$substrate by plasma enhanced chemical vapor deposition with varying rf power, deposition temperature, total flow rate. Crystallization time, microstructure, absorption coefficients were investigated by RAMAN, XRD analysis and UV transmittance measurement. Crystallization time of amorphous silicon films was increased with increasing rf power, decreasing deposition temperature and decreasing total flow rate.

  • PDF

Three-Dimensional Fluid Flow Analysis of Automotive Carbon Canister for Reducing Evaporative Emissions (증발가스 배출물 억제를 위한 자동차용 캐니스터의 3차원 유동장 해석)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.85-93
    • /
    • 2001
  • Minimized canister flow restriction and maximized flow uniformity are desired to maximize a purge capability. With the impending ORVR(On Board Refueling Vapor Recovery) systems, the reduction of restriction and increase of flow uniformity in a carbon canister becomes even more critical to meet the stringent regulation. In this study, three-dimensional numerical simulations have been performed to investigate the three-dimensional internal flow patterns in a carbon canister during purge. The effects of the declined angle of the purge pipe and the number of partitions on the pressure drop and purge efficiency in a carbon packed bed are examined. Results show that the purge efficiency and space velocity distribution are affected in the upstream region of 40% of total canister bed by porosity of carbon granule and angle of purge pipe. It is also found that the purge efficiency decreases with increasing the number of partitions.

  • PDF

Bubble Behavior in a Micro-Multi-Branched-Channel (마이크로 복수 분지관에서의 버블거동에 관한 연구)

  • Kim, Kyung-Chun;Ryu, Geon-Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.32-36
    • /
    • 2006
  • Recently there are many researches about single flow and two-phase flow phenomena in the mini and microchannel. But from this result the principle in the microchannel was not explained clearly. In this paper two-phase flow pattern was visualized in the micro-multi-branched-channel using a high speed camera. Microchannel was fabricated with PDMS and glass slide. The velocity profile was obtained by a Micro PIV. Then flow boiling at the near inlet area was occurred and vapor was moved in the micro-multi-branched-channel.

  • PDF