• Title/Summary/Keyword: Vapor crystal growth

Search Result 326, Processing Time 0.024 seconds

One Alternative Process to Vapor Pressure Control for the Bulk Crystal Growth of GaAs

  • Oh, Myung-Hwan;Joo, Seung-Ki
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.149-156
    • /
    • 1998
  • In this work, aiming at improvement of growth processes for the bulk GaAs single crystals, efforts have been made first in investigate thermodynamic properties of the Ga and As system and second to suggest that bulk GaAs crystals could be grown in principle with the single temperature zone only by determining the excess arsenic charge as a function of growth conditions. During crystal growth, this will be evaporized inside the growth chamber to induce the required inner pressure, instead of aesenic vapor pressure in the double temperature zone method, so as to be in equilibrium with the method, growth experiments have been prepared and carried out for dopes and undoped GaAs crystals with the newly built Bridgman system which was designed according to this principle. To compare the results to those of the double temperature zone method, the same numbers of GaAs crystals have been grown with both processes and all of them were characterized in single crystallinity, lattice defects and electrical properties. Especially, the relationship between growth conditions and crystal quality was discussed from the viewpoint of growth peculiarities with this method.

  • PDF

Crystal growth of ring-shaped SiC polycrystal via physical vapor transport method (PVT 방법에 의한 링 모양의 SiC 다결정 성장)

  • Park, Jin-Yong;Kim, Jeong-Hui;Kim, Woo-Yeon;Park, Mi-Seon;Jang, Yeon-Suk;Jung, Eun-Jin;Kang, Jin-Ki;Lee, Won-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.163-167
    • /
    • 2020
  • Ring-shaped SiC (Silicon carbide) polycrystals used as an inner material in semiconductor etching equipment was manufactured using the PVT (Physical Vapor Transport) method. A graphite cylinder structure was placed inside the graphite crucible to grow a ring-shaped SiC polycrystal by the PVT method. The crystal polytype of grown crystal were analyzed using a Raman and an UVF (Ultra Violet Fluorescence) analysis. And the microstructure and components of SiC crystal were identified by a SEM (Scanning Electron Microscope) and EDS (Energy Disruptive Spectroscopy) analyses. The grain size and growth rate of SiC polycrystals fabricated by this method was varied with temperature variation in the initial stage of growth process.

A study on growing of bulk AlN single crystals grown having a (011) growth face of by PVT method (PVT법을 이용한 (011)면으로 성장된 AlN 단결정 성장에 관한 연구)

  • Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.32-34
    • /
    • 2015
  • AlN Single Crystal were grown by PVT (Physical vapor transport) method on bulk seed. It was performed by high-frequency induction-heating coil. AlN source powder was loaded at bottom side of the carbon crucible and the crystal seed was loaded at the upper side of the crucible. The temperature conditions of the growth was varied $2000{\sim}2100^{\circ}C$ and the surrounding pressure was $1{\times}10^{-1}{\sim}200$ Torr. And the hot-zone of the heating position was controlled elaborately according to growth. The 17 mm-diameter, 7 mm-thickness AlN single crystal is obtained for about 600 hours growing. It was recognized that the growth direction of as grown crystal was R[011] by the Laue X-Ray camera measurement.

Manipulation of Microstructures of in-situ Phosphorus-Doped Poly Silicon Films deposited on Silicon Substrate Using Two Step Growth of Reduced Pressure Chemical Vapor Deposition (감압화학증착의 이단계 성장으로 실리콘 기판 위에 증착한 in-situ 인 도핑 다결정 실리콘 박막의 미세구조 조절)

  • 김홍승;심규환;이승윤;이정용;강진영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.2
    • /
    • pp.95-100
    • /
    • 2000
  • For the well-controlled growing in-situ heavily phosphorus doped polycrystalline Si films directly on Si wafer by reduced pressure chemical vapor deposition, a study is made of the two step growth. When in-situ heavily phosphorus doped Si films were deposited directly on Si (100) wafer, crystal structure in the film is not unique, that is, the single crystal to polycrystalline phase transition occurs at a certain thickness. However, the well-controlled polycrtstalline Si films deposited by two step growth grew directly on Si wafers. Moreover, the two step growth, which employs crystallization of grew directly on Si wafers. Moreover, the two step growth which employs crystallization of amorphous silicon layer grown at low temperature, reveals crucial advantages in manipulating polycrystal structures of in-situ phosphorous doped silicon.

  • PDF

Essence of thermal convection for physical vapor transport of mercurous chloride in regions of high vapor pressures

  • Kim, Geug-Tae;Lee, Kyong-Hwan;Choi, Jeong-Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.231-237
    • /
    • 2007
  • For an aspect ratio (transport length-to-width) of 5, Pr=3.34, Le=0.078, Pe=4.16, Cv=1.01, $P_B=50$ Torr, only thermally buoyancy-driven convection ($Gr=4.83{\times}10^5$) is considered in this study in spite of the disparity in the molecular weights of the component A ($Hg_2Cl_2$) and B which would cause thermally and/or solutally buoyancy-driven convection. The crystal growth rate and the maximum velocity vector magnitude are decreased exponentially for $3{\le}Ar{\le}5$, for (1) adiabatic walls and (2) the linear temperature profile, with a fixed source temperature. This is related to the finding that the effects of side walls tend to stabilize convection in the growth reactor. The rate for the linear temperature profiles walls is slightly greater than for the adiabatic walls far varied temperature differences and aspect ratios. With the imposed thermal profile, a fixed source region, both the rate and the maximum velocity vector magnitude increase linearly with increasing the temperature difference for $10{\le}{\Delta}T{\le}50K$.

Predictions of zinc selenide single crystal growth rate for the micro gravity experiments

  • Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.226-232
    • /
    • 2004
  • One predicts the crystal growth rate of ZnSe with a low vapor pressure system in a horizontal configuration based on one dimensional advection-diffusion and two-dimensional diffusion-convection model. The present results show that for the ratios of partial pressures, s = 0.2 and 2.9, the growth rate increases with the temperature differences between the source and crystal. As the ratio of partial pressure approaches the stoichiometric value, s = 2 from s = 1.5 (zinc-deficient case: s < 2) and 2.9 (zinc-rich case: s > 2), the rate increases sharply. For the ranges from 1.5 to 1.999 (zinc-deficient case: s < 2) and from s = 9 to 2.9 (zinc-rich case: s > 2), the rate are slightly varied. From the viewpoint of the order of magnitude, the one-dimensional model for low vapor pressure system falls within the 2D predictions, which indicates the flow fields would be advective-diffusive. For the effects of gravitational accelerations on the rate, the gravitational constants are varied from 1 g to $10^{-6}$ g for $\Delta$T = 50 K and s = 1.5, the rates remain nearly constant, i.e., 211 mg/hr, which indicates Stefan flow is dominant over convection.

Studies on Nusselt and Sherwood number for diffusion-advective convection during physical vapor transport of Hg2Br2

  • Kim, Geug Tae;Kwon, Moo Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.127-136
    • /
    • 2021
  • This paper is dedicated to numerical simulation for diffusion-advective convection in a square cavity during physical vapor transport of Hg2Br2. Flow characteristics of the temperature difference between the source and crystal regions, 50℃ (300℃ → 250℃), partial pressures of component argon of 20 Torr and 100 Torr are investigated and presented as velocity vectors and streamlines, isotherms and iso-mass concentrations contours. Moreover, alterations of average Nusselt and average Sherwood numbers with (a) the source and crystal regions, (b) the pressures of component argon of 20 Torr and 100 Torr are analyzed and addressed in details. Both average Nusselt and average Sherwood numbers are seen to decrease with the increasing values of the partial pressures of component argon. Also, it is found that for the two different partial pressures of component argon, average Nusselt numbers at the source region are greater than at the crystal region, and inversely, average Sherwood numbers at the crystal region are greater than the source region by a factor of 3.

Growth of nickel-catalyzed carbon nanofibers using MPCVD method and their electrical properties

  • Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • Carbon nanofilaments were formed on silicon substrate via microwave plasma-enhanced chemical vapor deposition method. The structure of carbon nanofilaments was identified as the carbon nanofibers. The extent of carbon nanofibers growth and the diameters of carbon nanofibers increased with increasing the total pressure. The growth direction of carbon nanofibers was horizontal to the substrate. Laterally grown carbon nanofibers showed the semiconductor electrical characteristics.

A study on the growth morphology of AlN single crystal according to the change in temperature using HVPE method (HVPE(Hydride Vapor Phase Epitaxy) 법을 적용한 온도 변화에 따른 AlN 단 결정의 성장 형상에 관한 연구)

  • Seung Min Kang;Gyong-Phil Yin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.36-39
    • /
    • 2024
  • As interest in power semiconductors is growing recently, research on device design and application using light energy gap materials such as SiC and GaN is being actively conducted. Because AlN single crystals have a larger energy gap than the above mentioned materials, research on high-power devices is also in progress, but commercialized wafers have not yet been reported, so research is needed. In this study, we applied the HVPE (Hydride vapor phase epitaxy) method to produce AlN single crystals and attempted to obtain bulk single crystals using our own manufacturing equipment. To this end, we would like to report the results of securing the growth conditions for single crystals. we would like to report on the change in the shape of the grown crystal according to the change in temperature.

Low temperature deposition of carbon nanofilaments using vacuum-sublimated $Fe(CO)_5$ catalyst with thermal chemical vapor deposition

  • Kim, Nam-Seok;Kim, Kwang-Duk;Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.1
    • /
    • pp.18-22
    • /
    • 2007
  • Carbon nanofilaments were deposited on silicon oxide substrate by thermal chemical vapor deposition method. We used $Fe(CO)_5$ as the catalyst for the carbon nanofilaments formation. Around $800^{\circ}C$ substrate temperature, the formation density of carbon nanofilaments could be enhanced by the vacuum sublimation technique of $Fe(CO)_5$, compared with the conventional spin coating technique. Finally, we could achieve the low temperature, as low as $350^{\circ}C$, formation of carbon nanofilaments using the sublimated Fe-complex nanograins with thermal chemical vapor deposition. Detailed morphologies and characteristics of the carbon nanofilaments were investigated. Based on these results, the role of the vacuum sublimation technique for the low temperature deposition of carbon nanofilaments was discussed.