Essence of thermal convection for physical vapor transport of mercurous chloride in regions of high vapor pressures

  • Kim, Geug-Tae (Department of Nano-Bio Chemical Engineering, Hannam University) ;
  • Lee, Kyong-Hwan (Fossil Energy Environment Research Department, Korea Institute of Energy Research) ;
  • Choi, Jeong-Gil (Department of Nano-Bio Chemical Engineering, Hannam University)
  • Published : 2007.12.31

Abstract

For an aspect ratio (transport length-to-width) of 5, Pr=3.34, Le=0.078, Pe=4.16, Cv=1.01, $P_B=50$ Torr, only thermally buoyancy-driven convection ($Gr=4.83{\times}10^5$) is considered in this study in spite of the disparity in the molecular weights of the component A ($Hg_2Cl_2$) and B which would cause thermally and/or solutally buoyancy-driven convection. The crystal growth rate and the maximum velocity vector magnitude are decreased exponentially for $3{\le}Ar{\le}5$, for (1) adiabatic walls and (2) the linear temperature profile, with a fixed source temperature. This is related to the finding that the effects of side walls tend to stabilize convection in the growth reactor. The rate for the linear temperature profiles walls is slightly greater than for the adiabatic walls far varied temperature differences and aspect ratios. With the imposed thermal profile, a fixed source region, both the rate and the maximum velocity vector magnitude increase linearly with increasing the temperature difference for $10{\le}{\Delta}T{\le}50K$.

Keywords

References

  1. N.B Singh, M. Gottlieb, G.B. Brandt, A.M. Stewart, R. Mazelsky and M.E. Glicksman, 'Growth and character­ization of mercurous halide crystals:mercurous bromide system,' J. Crystal Growth 137 (1994) 155 https://doi.org/10.1016/0022-0248(94)91265-3
  2. N.B. Singh, R.H. Hopkins, R. Mazelsky and J.J. Con­roy, 'Purification and growth of mercurous chloride sin­gle crystals,' J. Crystal Growth 75 (1970) 173
  3. S.J. Yosim and S.W. Mayer, 'The mercury-mercuric chloride system,' J. Phys. Chem. 60 (1960) 909
  4. F. Rosenberger, 'Fluid dynamics in crystal growth from vapors,' Physico-Chemical Hydro-dynamics 1 (1980)
  5. N.B. Singh, M. Gottlieb, A.P. Goutzoulis, R.H. Hop­kins and R. Mazelsky, 'Mercurous Bromide acousto­optic devices,' J. Crystal Growth 89 (1988) 527 https://doi.org/10.1016/0022-0248(88)90215-1
  6. B.L. Markham, D.W. Greenwell and F. Rosenberger, 'Numerical modeling of diffusive-convective physical vapor transport in cylindrical vertical ampoules,' J. Crystal Growth 51 (1981) 426 https://doi.org/10.1016/0022-0248(81)90419-X
  7. W.M. B. Duval, 'Convection in the physical vapor transport process-- I: Thermal,' J. Chemical Vapor Dep­osition 2 (1994) 188
  8. A. Nadarajah, F. Rosenberger and J. Alexander, 'Effects of buoyancy-driven flow and thermal boundary condi­tions on physical vapor transport,' J. Crystal Growth 118 (1992) 49 https://doi.org/10.1016/0022-0248(92)90048-N
  9. H. Zhou, A. Zebib, S. Trivedi and W.M.B. Duval, 'Physical vapor transport of zinc-telluride by dissocia­tive sublimation,' J. Crystal Growth 167 (1996) 534 https://doi.org/10.1016/0022-0248(96)00305-3
  10. F. Rosenberger, J. Ouazzani, I. Viohl and N. Buchan, 'Physical vapor transport revised,' J. Crystal Growth 171 (1997) 270 https://doi.org/10.1016/S0022-0248(96)00717-8
  11. N.B. Singh, R. Mazelsky and M.E. Glicksman, 'Evaluation of transport conditions during PVT: mercurous chloride system,' PhysicoChemical Hydrodynamics 11 (1989) 41
  12. F. Rosenberger and G. Muller, 'Interfacial transport in crystal growth, a parameter comparison of convective effects,' J. Crystal Growth 65 (1983) 91 https://doi.org/10.1016/0022-0248(83)90043-X
  13. M. Kassemi and W.M.B. Duval, 'Interaction of surface radiation with convection in crystal growth by physical vapor transport,' J. Thermophys. Heat Transfer 4 (1989) 454
  14. R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena (New York, NY: John Wiley and Sons, 1960)
  15. C. Mennetrier and W.M.B. Duval, 'Thermal-solutal con­vection with conduction effects inside a rectangular enclosure,' NASA Technical Memorandum 105371 (1991)
  16. S. V. Patankar, Numerical Heat Transfer and Fluid Flow (Washington D.C.: Hemisphere Publishing Corp., 1980)
  17. G.T. Kim, 'Convective-diffusive transport in mercurous chloride ($Hg_{2}CI_{2}$) crystal growth,' J. Ceramic Process­ing Research 6 (2005) 110
  18. I. Catton, 'Effect of wall conducting on the stability of a fluid in a rectangular region heated from below,' J. Heat Transfer 94 (1972) 446 https://doi.org/10.1115/1.3449966
  19. N.B. Singh and W.M.B. Duval, 'Growth kinetics of physical vapor transport processes: crystal growth of the optoelectronic material mercurous chloride,' NASA Technical Memorandum 103788 (1991)
  20. C. Mennetrier, W.M.B. Duval and N.B. Singh, 'Physi­cal vapor transport of mercurous chloride under a non­linear thermal profile,' NASA Technical Memorandum 105920 (1992)