Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2021.31.3.127

Studies on Nusselt and Sherwood number for diffusion-advective convection during physical vapor transport of Hg2Br2  

Kim, Geug Tae (Department of Chemical Engineering, Hannam University)
Kwon, Moo Hyun (Department of Energy and Electrical Engineering, Woosuk University)
Abstract
This paper is dedicated to numerical simulation for diffusion-advective convection in a square cavity during physical vapor transport of Hg2Br2. Flow characteristics of the temperature difference between the source and crystal regions, 50℃ (300℃ → 250℃), partial pressures of component argon of 20 Torr and 100 Torr are investigated and presented as velocity vectors and streamlines, isotherms and iso-mass concentrations contours. Moreover, alterations of average Nusselt and average Sherwood numbers with (a) the source and crystal regions, (b) the pressures of component argon of 20 Torr and 100 Torr are analyzed and addressed in details. Both average Nusselt and average Sherwood numbers are seen to decrease with the increasing values of the partial pressures of component argon. Also, it is found that for the two different partial pressures of component argon, average Nusselt numbers at the source region are greater than at the crystal region, and inversely, average Sherwood numbers at the crystal region are greater than the source region by a factor of 3.
Keywords
Diffusion-advection; Nusselt number; Sherwood number; Physical vapor transport; $Hg_2Br_2$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J.-Q. Yang and B.-X. Zhao, "Numerical investigation of double-diffusive convection in rectangular cavities with different aspect ratio I: High-accuracy numerical method", Comput. Math. Appl. 94 (2021) 155, https://doi.org/10.1016/j.camwa.2021.05.002.   DOI
2 J.-T. Hu and S.-J. Me, "Unsteady double diffusive convection inside a partial porous building enclosure subjected to time-periodic temperature boundary condition", Int. Commun. Heat Mass Transf. 122 (2021) 105128, https://doi.org/10.1016/j.icheatmasstransfer.2021.105128.   DOI
3 Z. Raizah and A.M. Aly, "Double-diffusive convection of a rotating circular cylinder in a porous cavity suspended by nano-encapsulated phase change materials", Case Studies in Thermal Eng. 24 (2021) 100864, https://doi.org/10.1016/j.csite.2021.100864.   DOI
4 M.M. Rajabi, M. Fahs, A. Panjehfouladgaran, B. AtaieAshtiani, C.T. Simmons and B. Belfort, "Uncertainty quantification and global sensitivity analysis of doublediffusive natural convection in a porous enclosure", Int. J. Heat Mass Transf. 162 (2020) 120291, https://doi.org/10.1016/j.ijheatmasstransfer.2020.120291.   DOI
5 I.S. Shivakumara, K.R. Raghunatha and G. Pallavi, "Intricacies of coupled molecular diffusion on double diffusive viscoelastic porous convection", Results in Appl. Math. 7 (2020) 100124, https://doi.org/10.1016/j.rinam.2020.100124.   DOI
6 S. Darbhasayanam and D. Barman, "The variable gravity field and viscous dissipation effects on the double diffusive and Soret driven convective instability in a porous layer with throughflow", Int. Commun. Heat Mass Transf. 120 (2021) 105050, https://doi.org/10.1016/j.icheatmasstransfer.2020.105050.   DOI
7 I. Filahi, M. Hasnaoui, A. Am ahm id and M. Bourich, "Double-diffusive natural convection study in a shallow horizontal porous layer filled with a binary fluid and submitted to destabilized conditions in the presence of Soret effect", Mater. Today Proc. 45 (2021) 7432, https://doi.org/10.1016/j.matpr. 2021.01.685.   DOI
8 S. Kondo, H. Gotoda, T. Miyano and I.T. Tokuda, "Chaotic dynamics of large-scale double-diffusive convection in a porous medium", Physica D: Nonlinear Phenomena 364 (2018) 1, https://doi.org/10.1016/j.physd.2017.08.011.   DOI
9 S. Hussain, H.F. Oztop, M.A. Qureshi and N. Abu-Hamdeh, "Double diffusive buoyancy induced convection in stepwise open porous cavities filled nanofluid", Int. Commun. Heat Mass Transf. 119 (2020) 104949, https://doi.org/10.1016/j.icheatmasstransfer.2020.104949.   DOI
10 Q. Yu, "A decoupled wavelet approach for multiple physical flow fields of binary nanofluid in double-diffusive convection", Appl. Math. Comput. 404 (2021) 126232, https://doi.org/10.1016/j.amc.2021.126232.   DOI
11 Q. Liu, X.-B. Feng, X.-T. Xu and Y.-L. He, "Multiple-relaxation-time lattice Boltzmann model for double-diffusive convection with Dufour and Soret effects", Int. J. Heat Mass Transf. 139 (2019) 713, https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.026.   DOI
12 S. Hamimid, M. Guellal and M. Bouafia, "Limit the buoyancy ratio in Boussinesq approximation for double-diffusive convection in binary mixture", Phys Fluids 33 (2021) 036101, https://doi.org/10.1063/5.0037320.   DOI
13 G.T. Kim and M.H. Kwon, "Num erical analysis of the influences of impurity on diffusive-convection flow fields by physical vapor transport under terrestrial and microgravity conditions: with application to mercurous chloride", Appl. Chem. Eng. 27 (2016) 335.   DOI
14 N.B. Singh, M. Gottlieb, R.H. Hopkins, R. Mazelsky, W.M.B. Duval and M.E. Glicksman "Physical vapor transport growth of mercurous chloride crystals", Prog. Crystal Growth and Charact. 27 (1993) 201.   DOI
15 S. Hussain, M. Jamal and B.P. Geridonmez, "Impact of power law fluid and magnetic field on double diffusive mixed convection in staggered porous cavity considering Dufour and Soret effects", Int. Commun. Heat Mass Transf. 121 (2021) 105075, https://doi.org/10.1016/j.icheatmasstransfer.2020.105075.   DOI
16 K.A. McCarthy, A.P. Goutzoulis, M. Gottlieb and N.B. Singh, "Optical rotatory power in crystals of the mercurous halides and tellurium dioxide", Opt. Commun. 64 (1987) 157.   DOI
17 R. Mazelsky, D.K. Fox, "Development of large single crystals for electronic, electro-optic and acousto-optic devices", Prog. Crystal Growth and Charact. 15 (1987) 75.   DOI
18 N.B. Singh, M. Marshall, M. Gottlieb, G.B. Brandt, R.H. Hopkins, R. Mazelsky, W.M.B. Duval and M.E. Glicksman, "Purification and characterization of mercurous halides", J. Cryst. Growth 106 (1990) 61.   DOI
19 N.B. Singh, M. Gottlieb and R. Mazelsky, "The optical quality of mercurous halides crystals", J. Cryst. Growth 128 (1993) 1053.   DOI
20 M. Dalmon, S. Nakashima, S. Komatsubara and A. Mitsuishi, "Softening of acoustic and optical modes in ferroelstic phase in Hg2Br2", Solid State Commun. 28 (1978) 815.   DOI
21 J.S. Kim, S.B. Trivedi, J. Soos, N. Gupta and W. Palosz, "Growth of Hg2Cl2 and Hg2Br2 single crystals by physical vapor transport", J. Cryst. Growth 310 (2008) 2457.   DOI
22 T.H. Kim, H.T. Lee, Y.M. Kang, G.E. Jang, I.H. Kwon and B. Cho, "In-depth investigation of Hg2Br2 crystal growth and evolution", Materials 12 (2019) 4224, https://doi.org/10.3390/ma12244224.   DOI
23 P.M. Amarasinghe, J.S. Kim, H. Chen, S. Trivedi, S.B. Qadri, J. Soos, M. Diestler, D. Zhang, N. Gupta and J.L. Jensen, "Growth of high quality mercurous halide sing crystals by physical vapor transport method for AOM and radiation detection applications", J. Cryst. Growth 450 (2016) 96.   DOI
24 A.A. Kaplyanskii, V.V. Kulakov, Yu.F. Markov and C. Barta, "The soft mode properties in Raman spectra of improper ferroelastics Hg2Cl2 and Hg2Br2", Solid State Commun. 21 (1977) 1023.
25 N.B. Singh, M. Gottlieb, A.P. Goutzoulis, R.H. Hopkins and R. Mazelsky, "Mercurous Bromide acoustooptic devices", J. Cryst. Growth 89 (1988) 527.   DOI
26 N.B. Singh, M. Gottlieb, G.B. Branddt, A.M. Stewart, R.H. Hopkins, R. Mazelsky and M.E. Glicksman, "Growth and characterization of mercurous halide crystals: mercurous bromide system", J. Cryst. Growth 137 (1994) 155.   DOI
27 L. Liu, R. Li, L. Zhang, P. Zhang, G. Zhang, S. Xia and X. Tao, "Long wavelength infrared acousto-optic crystal Hg2Br2: Growth optimization and photosensitivity investigation", J. Alloys Compd. 874 (2021) 159943, https://doi.org/10.1016/j.jallcom.2021.159943.   DOI
28 G.A. Meften, "Conditional and unconditional stability for double diffusive convection when the viscosity has a maximum", Appl. Math. Comput. 392 (2021) 125694, https://doi.org/10.1016/j.amc.2020.125694.   DOI
29 J.A. Weaver and R. Viskanta, "Natural convection due to horizontal temperature and concentration gradients -1. Variable thermophysical property effects", Int. J. Heat and Mass Transf. 34 (1991) 3107.   DOI
30 M. Chakkingal, R. Voigt, C.R. Kleijn and S. Kenjeres, "Effect of double-diffusive convection with cross gradients on heat and mass transfer in a cubical enclosure with adiabatic cylindrical obstacles", Int. J. Heat Fluid Flow 83 (2020) 108574, https://doi.org/10.1016/j.ijheatfluidflow.2020.108574.   DOI
31 A. Chauhan, P.M. Sahu and C. Sasmal, "Effect of polymer additives and viscous dissipation on natural convection in a square cavity with differentially heated side walls", Int. J. Heat and Mass Transf. 175 (2021) 121342, https://doi.org/10.1016/j.ijheatmasstransfer.2021.121342.   DOI
32 S.H. Ha and G.T. Kim, "Preliminary studies on double-diffusive natural convection during physical vapor transport crystal growth of Hg2Br2 for the spaceflight experiments", Korean Chem. Eng. Res. 57 (2019) 289.   DOI
33 G.T. Kim and M.H. Kwon, "Double-diffusive convection affected by conductive and insulating side walls during physical vapor transport of Hg2Br2", J. Korean Cryst. Growth Cryst. Tech. 30 (2020) 117.   DOI
34 W.M.B. Duval, "Transition to chaos in the physical transport process-I", the Proceeding of the ASME--WAM Winter Annual meeting, Fluid mechanics phenomena in microgravity, ASME-WAM, New Orleans, Louisiana (1993).
35 S.V. Patankar, "Numerical Heat Transfer and Fluid Flow", (Hemisphere Publishing Corp., Washington D. C., 1980) p. 131.
36 J.A. Weaver and R. Viskanta, "Natural convection due to horizontal temperature and concentration gradients -2. Species interdiffusion, Soret and Dufour effects", thermophysical property effects", Int. J. Heat and Mass Transf. 34 (1991) 3121.   DOI
37 A. Sharma, D. Tripathi, R.K. Sharma and A.K. Tiwari, "Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids", Physica A: Statistical Mechanics and its Applications 535 (2019) 122148, https://doi.org/10.1016/j.physa.2019.122148.   DOI
38 G.T. Kim and M.H. Kwon, "Effects of solutally dominant convection on physical vapor transport for a mixture of Hg2Br2 and Br2 under microgravity environments", Korean Chem. Eng. Res. 52 (2014) 75.   DOI