• Title/Summary/Keyword: Vapor crystal growth

Search Result 328, Processing Time 0.025 seconds

Real-time Spectroscopic Ellipsometry studies of the Effect of Preparation Parameters on the Coalescence Characteristics of Microwave-PECVD Diamond Films

  • Hong, Byungyou
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.49-54
    • /
    • 1998
  • The growth of diamond films in plasma enhanced chemical vapor deposition(PECVD) processes requires high substrate temperatures and gas pressures, as well as high-power excitation of the gas source. Thus determining the substrate temperature in this severe environment is a challenge. The issue is a critical one since substrate temperature is a key parameter for understanding and optimizing diamond film growth. The precise Si substrate temperature calibration based on rapid-scanning spectroscopic ellipsometry have been developed and utilized. Using the true temperature of the top 200 ${\AA}$ of the Si substrate under diamond growth conditions, real time spectroellipsometry (RTSE) has been performed during the nucleation and growth of nanocrystallind thin films prepared by PECVD. RTSE shows that a significant volume fraction of nondiamond(or{{{{ {sp }^{2 } -bonded}}}}) carbon forms during thin film coalescence and is trapped near the substrate interface between ∼300 ${\AA}$ diamond nuclei.

  • PDF

Growth characteristics of 4H-SiC homoepitaxial layers grown by thermal CVD

  • Jang, Seong-Joo;Jeong, Moon-Taeg;Seol, Woon-Hag;Park, Ju-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.303-308
    • /
    • 1999
  • As a semiconductor material for electronic devices operated under extreme environmental conditions, silicon carbides(SiCs) have been intensively studied because of their excellent electrical, thermal and other physical properties. The growth characteristics of single-crystalline 4H-SiC homoepitaxial layers grown by a thermal chemical vapor deposition (CVD) were investigated. Especially, the successful growth condition of 4H-SiC homoepitaxial layers using a SiC-uncoated atmospheric pressure chamber and carried out using off-oriented substrates prepared by a modified Lely method. In order to investigate the crystallinity of grown epilayers, Nomarski optical microscopy, Raman spectroscopy, photoluninescence(PL), scanning electron microscopy(SEM) and other techniques were utilized. The best quality of 4H-SiC homoepitaxial layers was observed in conditions of growth temperature $1500^{\circ}C$ and C/Si flow ratio 2.0 of $C_{3}H_{8}\;0.2\;sccm\;&\;SiH_{4}\;0.3\;sccm$. The growth rate of epilayers was about $1.0\mu\textrm{m}/h$ in the above growth condition.

  • PDF

Growth and thermal annealing of polycrystalline Ga2O3/diamond thin films on Si substrates (다결정 산화갈륨/다이아몬드 이종 박막 성장 및 열처리 효과 연구)

  • Seo, Ji-Yeon;Kim, Tae-Gyu;Shin, Yun-Ji;Jeong, Seong-Min;Bae, Si-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.233-239
    • /
    • 2021
  • In this study, Ga2O3/diamond layers were grown on Si substrates to improve the thermal characteristics of Ga2O3 materials. Firstly, diamond thin film was grown on Si substrates by hot-filament chemical vapor deposition. Afterward, Ga2O3 layer was grown in the growth temperature range of from 450~600℃ by mist chemical vapor deposition. We found that layer separation happens at the Ga2O3/diamond interface at the growth temperature of 500℃. This is attributed to the different thermal expansion coefficient of the mixture of amorphous and crystalline structures during cooling process. Therefore, this study might contribute to the heat-sink-layer bonded power semiconductor applications by stabilizing the thermal properties at Ga2O3/diamond interface.

Characteristics of Free-Standing GaN Substrates grown by Hydride Vapor Phase Epitaxy (Hydride Vapor Phase Epitaxy 법으로 성장된 Free-Standing GaN 기판의 특성에 관한 연구)

  • Kim, Hwa-Mok;Choe, Jun-Seong;O, Jae-Eung;Yu, Tae-Gyeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.3
    • /
    • pp.14-19
    • /
    • 2000
  • Free-standing GaN single crystal substrates have been obtained by growing thick GaN epitaxial layers on (0001) sapphire substrates using hydride vapor phase epitaxy (HVPE) method. After growing the GaN thick film of 200 ${\mu}{\textrm}{m}$, a free-standing GaN with a size of 10 mm $\times$10 mm were obtained by mechanical polishing process to remove sapphire substrate. Crack-free GaN substrates have been obtained by GaCl pre-treatment prior to the growth of GaN epitaxial layers. Properties of free-standing GaN substrates have been compared with those of lateral epitaxial overgrowth (LEO) GaN films by double-crystal x-ray diffraction (DC-XRD), cathodoluminescence (CL) and photoluminescence (PL) measurements.

  • PDF

Controlling of the heterogeniously growing GaN polycrystals using a quartz ring in the edge during the HVPE-GaN bulk growth

  • Park, Jae Hwa;Lee, Hee Ae;Park, Cheol Woo;Kang, Hyo Sang;Lee, Joo Hyung;In, Jun-Hyeong;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.439-443
    • /
    • 2018
  • The outstanding characteristics of high quality GaN single crystal substrates make it possible to apply the manufacture of high brightness light emitting diodes and power devices. However, it is very difficult to obtain high quality GaN substrate because the process conditions are hard to control. In order to effectively control the formation of GaN polycrystals during the bulk GaN single crystal growth by the HVPE (hydride vapor phase epitaxy) method, a quartz ring was introduced in the edge of substrate. A variety of evaluating method such as high resolution X-ray diffraction, Raman spectroscopy and photoluminescence was used in order to measure the effectiveness of the quartz ring. A secondary ion mass spectroscopy was also used for evaluating the variations of impurity concentration in the resulting GaN single crystal. Through the detailed investigations, we could confirm that the introduction of a quartz ring during the GaN single crystal growth process using HVPE is a very effective strategy to obtain a high quality GaN single crystal.

High-quality ZnO nanowire arrays directly synthesized from Zn vapor deposition without catalyst

  • Khai, Tran Van;Prachuporn, Maneeratanasarn;Choi, Bong-Geun;Kim, Hyoun-Woo;So, Dae-Sup;Lee, Joon-Woo;Park, No-Hyung;Huh, Hoon;Tung, Ngo Trinh;Ham, Heon;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.137-146
    • /
    • 2011
  • Vertically well-aligned ZnO nanowire (NW) arrays were synthesized directly on GaN/sapphire and Si substrate from Zn vapor deposition without catalysts. Experimental results showed that the number density, diameter, crystallinity and degree of the alignment of ZnO NWs depended strongly on both the substrate position and kind of the substrates used for the growth. The photoluminescence (PL) characteristics of the grown ZnO NW arrays exhibit a strong and sharp ultraviolet (UV) emission at 379 nm and a broad weak emission in the visible range, indicating that the obtained ZnO NWs have a high crystal quality with excellent optical properties. The as-grown ZnO NWs were characterized by using scanning electron microscopy (SEM), high resolution transmission electronic microscopy (HR-TEM), and X-ray diffraction (XRD).

A Study for the Homoepitaxial Growth of Single-crystalline 6H-SiCs.

  • Jang, Seong-Joo;Seol, Woon-Hag;Jeong, Moon-Taek
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.269-274
    • /
    • 1997
  • Silicon carbide(SiC) epilayers were grown by a thermal CVD(chemical vapor deposition) process, and their crystalline properties were investigated. Especially, the growth conditions of 6H-Sic homoepitaxial layers were obtained using a SiC-uncoated graphite susceptor that utilized Mo-plates. In order to investigate the crystallinity of grown layers, Nomarski photograph, transmittance, XRD, Raman, PL and TEM measurements were used. The best quality of 6H-SiC epilayers was obtained in conditions of growth temperature 1500$^{\circ}C$ and C/Si ratio 2.0.

  • PDF

Crystal Structure Ana1ysis of the Diamond Films Grown by MPCVD (MPCVD에 의한 다이아몬드 박막의 결정구조 해석)

  • 원종각;김종성;흥근조;권상직
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.391-394
    • /
    • 1999
  • The diamond thin films are deposited on silicon using MPCVD(Microwave Plasma Chemical Vapor Deposition) method at various deposition microwave power and time. Diamond is deposited with 100 sccm H$_2$ and 2 sccm CH$_4$ by MPCVD. The crystallinity of diamond thin films were increased with increase of microwave power. The growth rate of diamond thin films were increased with increase of time.

  • PDF

Characterization of In(Al)GaN layer grown by mixed-source hydride vapor phase epitaxy (혼합소스 HVPE에 의해 성장된 In(Al)GaN 층의 특성)

  • Hwang, S.L.;Kim, K.H.;Jang, K.S.;Jeon, H.S.;Choi, W.J.;Chang, J.H.;Kim, H.S.;Yang, M.;Ahn, H.S.;Bae, J.S.;Kim, S.W.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.157-161
    • /
    • 2006
  • InGaN layers on GaN templated sapphire (0001) substrates were grown by mixed-source hydride vapor phase epitaxy (HVPE) method. In order to get InGaN layers, Ga-mixed In metal and $NH_3$ gas were used as group III and group V source materials, respectively. The InGaN material was compounded from chemical reaction between $NH_3$ and indium-gallium chloride farmed by HCl flowed over metallic In mixed with Ga. The grown layers were confirmed to be InGaN ternary crystal alloys by X-ray photoelectron spectroscopy (XPS). In concentration of the InGaN layers grown by selective area growth (SAG) method was investigated by the photoluminescence (PL) and cathodoluminescence (CL) measurements. Indium concentration was estimated to be in the range 3 %. Moreover, as a new attempt in obtaining InAlGaN layers, the growth of the thick InAlGaN layers was performed by putting small amount of Ga and Al into the In source. We found the new results that the metallic In mixed with Ga (and Al) as a group III source material could be used in the growth process of the In(Al)GaN layers by the mixed-source HVPE method.

Synthesis of free-standing ZnO/Zn core-shell micro-polyhedrons using thermal chemical vapor deposition (열화학기상증착법을 이용한 프리스탠딩 ZnO/Zn 코어셀 마이크로 다면체 구조물의 합성)

  • Choi, Min-Yeol;Park, Hyun-Kyu;Jeong, Soon-Wook;Kim, Sang-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.4
    • /
    • pp.155-159
    • /
    • 2008
  • In this work, we report synthesis of free-standing ZnO/Zn core-shell micro-polyhedrons using metal Zn pellets as a source material by the thermal chemical vapor deposition process. Scanning and transmission electron microscopy measurements were introduced to investigate morphologies and structural properties of as-grown ZnO/Zn core-shell micro-polyhedrons. It was found that micro-polyhedrons were composed of inner single-crystalline metal Zn surrounded by single-crystalline ZnO nanorod arrays. The inner single crystalline metal Zn with micro-scale diameter has a hexagonal crystal structure. Diameter and height of ZnO nanorods covering the metal Zn surface are below 10 nm and 100 nm, respectively. It was also confirmed that c-axis oriented ZnO nanorods are single crystalline with a hexagonal crystal structure.