• Title/Summary/Keyword: Vapor adsorption

Search Result 169, Processing Time 0.03 seconds

Effects of Packaging Methods on Water Adsorption Rate and Shelf-life of Hot-air and Freeze Dried Garlic Slices (포장방법이 열풍 및 동결 건조마늘절편의 흡습속도와 Shelf-life 에 미치는 영향)

  • Koh, Ha-Young;Park, Hyung-Woo;Kang, Tong-Sam;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.380-384
    • /
    • 1988
  • The coefficients of the hot-air and freeze dried garlic isotherms and the critical water activities of these were estimated to be 0.85-0.94 by the linear regression and 0.58-0.60 by the sensory evaluation and ${\Delta}E$ value. Water adsorption rate(K) of hot-air dried garlic packaged with $48{\mu}m$ low density polyethylene(LDPE) decreased from $0.12g\;H_2O/100g/day\;to\;0.093g\;H_2O$/100g/day with decreasing the package dimension from $0.051m^2\;to\;0.029m^2\;at\;40^{\circ}C$ and 75% RH, and that of freeze dried one decreased from $0.17g\;H_2O/100g/day\;to\;0.12g\;H_2O$/100g/day as the filling weight increased from 50g to 10g in the package of $0.051m^2$. Shelf-life of hot-air dried garlic packaged with $80{\mu}m$ LDPE were 99days at $40^{\circ}C,\;283day\;at\;30^{\circ}C\;and\;455\;days\;at\;15^{\circ}C$ in the 75% RH. The differences of water contents between predicted data with water vapor permeability of the conventional method and experimental data were 0-1.5% in the water content range of around 13-18%, but about 2 in the water content range of around 8-11%.

  • PDF

Effect of SiO$_2/Al_2O_3$ Ratio of HZSM-5 Catalyst on the Synthesis of Methyl tert-butylether (Methyl tert-Butylether 合成에 미치는 HZSM-5 觸媒의 SiO$_2/Al_2O_3$ 比의 영향)

  • Geon-Joong Kim;Wha-Seung Ahn;Byung-Rin Cho;Lee-Mook Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.135-142
    • /
    • 1989
  • Methyl tert-butyl ether(MTBE) was synthesized from vapor phase reaction of methanol with iso-butylene over HZSM-5 catalysts, and effects of SiO$_2/Al_2O_3$ ratio in the HZSM-5 catalysts and reaction conditions on products distribution have been examined. Acid strength and acid type of each catalyst with different SiO$_2/Al_2O_3$ ratio were measured using pyridine adsorption followed by temperature programmed desorption(TPD) and IR analysis. Reactants and products adsorption characteristics on different acid sites have also been examined. As the SiO$_2/Al_2O_3$ ratio of HZSM-5 catalyst was increased, selectivity to MTBE was improved as a result of decrease in dimethylether(DME) formation at the strong acid sites. Conversion and selectivity to MTBE were also greatly enhanced as $i-C_4H_8/CH_3OH$ reactant ratio was increased, and overall about 80$^{\circ}$C was adequate for the MTBE synthesis. The properties of deposited coke on spent catalysts were examined by TG, DTA and IR spectrum analysis, indicating the amount of the coke deposit in the order of HY > H-Mordenite > HZSM-5. Even if the coke deposited on H-Mordenite was little more in amount than to that on HZSM-5, the former deactivated quickly due to its non-interconnected channel structure. For HY, owing to its lange pore size, significant $i-C_4H_8$ polymerization was occured, and rapid deactivation and severe coke formation has resulted within few hours.

  • PDF

Analysis of Volatile Organic Compounds in Sediments Using HS-GC/MS - Confirmation of Matrix Effects in External and Internal Standard Methods - (HS-GC/MS를 이용한 퇴적물 중 휘발성유기화합물 분석 - 외부 및 내부표준방법에서 매질영향 확인 -)

  • Shin, Myoung-Chul;Jung, Da-som;Noh, Hye-ran;Yu, Soon-ju;Seo, Yong-Chan;Lee, Bo-Mi
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.510-519
    • /
    • 2021
  • Volatile Organic Compounds (VOCs) in sediments, which can cause human health problems, have been monitored in Korea since 2014. Measured VOC concentrations can be affected by matrix type and the volatility of target substances. In this study, (1) VOCs volatility and the influence of matrix interference were confirmed, and (2) internal standards (IS) method was applied to improve analytical method. For these purposes, method detection limit (MDL), calibration linearity, precision and accuracy of VOCs were compared in various matrices using the IS. Some of VOCs in sediments showed different peak areas and reduced rates compared to water matrix. It was suggested that adsorption properties of sediments hindered the migration to vapor during heat pretreatment in headspace method. A calibration curve was created in clean sand. Recovery rates for the calibration curve method and IS applying method were 64.1~83.1% and 99.1~119.3%, respectively. Relative standard deviations ranged from 11.1% to 21.6% for the calibration curve method and those for IS ranged 4.7% to 13.7%. In case of real sediment, calibration curve and 1,2-Dichlorobenzene-d4 (ODCB) among IS were not suitable. The average recovery rate of Fluorobenzene (FBZ) increased by 56.4% and Relative Standard Deviation (RSD) by 4.7%. However, the recovery rate was increased in the samples with large values of igniting intensity. This study confirmed that influence of the matrix of VOCs in sediment, and addition of IS materials improved precision and accuracy. Although IS corrects volatilization and adsorption, it is recommended that more than two types of IS should be added rather than single.

Low Temperature CO Oxidation over Cu-Mn Mixed Oxides (Cu-Mn 혼합산화물 상에서 일산화탄소의 저온산화반응)

  • Cho, Kyong-Ho;Park, Jung-Hyun;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.132-139
    • /
    • 2010
  • The Cu-Mn mixed oxide catalysts with different molar ratios of Cu/(Cu+Mn) prepared by co-precipitation method have been investigated in CO oxidation at $30^{\circ}C$. The catalysts used in this study were characterized by X-ray Diffraction (XRD), $N_2$ sorption, X-ray photoelectron spectroscopy (XPS), and $H_2$-temperature programmed reduction $(H_2-TPR)$ to correlate with catalytic activities in CO oxidation. The $N_2$ adsorption-desorption isotherms of Cu-Mn mixed oxide catalysts showed a type 4 having pore range of 7-20 nm and BET surface area was increased from 17 to $205\;m^2{\cdot}g^{-1}$ with increasing of Mn content. The XPS analysis showed the surface oxidation state of Cu and Mn represented $Cu^{2+}$and the mixture of $Mn^{3+}$ and $Mn^{4+}$, respectively. Among the catalysts studied here, Cu/(Cu+Mn) = 0.5 catalyst showed the highest activity at $30^{\circ}C$ in CO oxidation and the catalytic activity showed a typical volcano-shape curve with respect to Cu/(Cu+Mn) molar ratios. The water vapor showed a prohibiting effect on the efficiency of the catalyst which is due to the competitive adsorption of carbon monoxide on the active sites of catalyst surface and finally the formation of hydroxyl group with active metals.

A Study on the Performance Optimization of a Continuous Monitoring Method for Hazardous VOCs in the Ambient Atmosphere (환경대기 중 유해성 VOC에 대한 자동연속 측정방법의 성능 최적화에 관한 연구)

  • Son, Eun-Seong;Seo, Young-Kyo;Lee, Dong-Hyun;Lee, Min-Do;Han, Jin-Seok;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.6
    • /
    • pp.523-538
    • /
    • 2009
  • Recently, there has been a keen demand for real-time automatic monitoring of VOCs not only in Korea but other developed countries. We carried out this study to evaluate and to optimize the performance of a continuous automatic monitoring system for hazardous VOCs (HVOCs) in the ambient atmosphere, using an on-line GC system. The online system normally consisted of a Nafion dryer prior to a cold trap of an automatic thermal desorption apparatus and a GC system equipped with two detectors, i.e. PID and ECD. Preliminary tests conducted to check out any contamination of the system revealed an evidence of significant artifact formation of benzene, and it was found that the Nafion dryer (even brand new one) is the source of the benzene artifact. Thus, all the subsequent experiments in this study was carried out inevitably by removing the Nafion dryer. The on-line GC method was investigated with a variety of QC/QA performance criteria such as repeatability, linearity, lower detection limits, and accuracy. In order to find out the best operating condition for the on-line GC system, three different types (in terms of adsorption strength) of cold trap combinations were tested, i.e. (i) Tenax-TA and Carbopack-B combination (weak and hydrophobic); (ii) Tenax-TA, Carbopack-X and Carboxen-1000 combination (strong and hydrophilic); and (iii) Tenax-TA and Carbopack-X combination (medium and hydrophobic/hydrophilic). The USEPA TO-17 manual method was selected as a reference method to evaluate the performance of the on-line method. A series of experiments revealed that the system performance was superior to others when a cold trap packed with hydrophilic adsorbents (Tenax-TA/Carbopack-X/Carboxen-1000 combination) was used and operated at $25^{\circ}C$. However, the system with a cold trap packed with a combination of Tenax-TA and Carbopack-X is more recommended for field applications since the carboxen-1000 adsorbent is too sensitive to water vapor, and hence the performance of the system might be very unstable to humid samples or during rainy days. Furthermore, the precision and accuracy criteria of the Tenax-TA/ Carbopack-X combination were generally compatible with the triple adsorbents cold trap. The continuous automatic monitoring method is, thus, considered very useful to real-time monitoring to understand the variations of VOCs concentrations in ambient air, as it adopts much simpler procedures in sampling, analysis, and data integration steps than manual monitoring methods. However, it should be noted that there is a high possibility of benzene artifacts formation through the Nafion dryer, which is often installed to remove water vapor in air samples before being adsorbed onto the cold trap. Therefore, if a Nafion dryer is used in any studies of monitoring VOCs, the benzene contamination should be carefully examined before carrying out obtaining the data.

Characteristics of Soy Protein Isolate Films Plasticized by Mixtures of Crystalline and Aqueous Sorbitol or Glycerin (솔비톨 혼합물과 글리세린 가소제에 의한 분리 대두단백질 필름의 특성연구)

  • Kim Ki-Myong;Hanna Milford A.;Choi Won-Seok;Cho Sung-Hwan;Choi Sung-Gil
    • Food Science and Preservation
    • /
    • v.13 no.3
    • /
    • pp.285-291
    • /
    • 2006
  • The effects of sorbitol mixture as plasticizers on moisture sorption property (MSP), water vapor permeability (WVP), color, tensile strength (TS), elongation at break (E), and total soluble matter (TSM) of soy protein isolate (SPI) films were investigated. Two different types of sorbitols, aqueous and crystalline, were added to film-forming solutions in various ratios of crystalline to aqueous (0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, or 1:0, based on weight). In addition, the characteristics of the SPI films plasticized by sorbitol mixtures and glycerin were compared with moisture sorption rate against time. Sorbitol-plasticized films had higher in TS, but lower in WVP and E than the glycerin-plasticized films. However the properties of SPI films did not differ appreciably by the type of sorbitol added to film-forming solutions. To explain the high solubility and low WVP of sorbitol-plasticized films, cumulative amounts of moisture content gained during adsorption and lost during desorption of films were compared between sorbitol and glycerin-plasticized films. The result suggest that use of sorbitol as a plasticizer for preparing SPI films improves moisture barrier properties of the films. However the high solubility of sorbitol-plasticized films needs to be reduced for improving the functionality of SPI films in potential packaging applications.

Geotechnical Characteristics of Prefabricated Vertical Drain System for Contaminated Soil Remediation (오염토양 복원을 위한 연직배수시스템의 지반공학적 특성)

  • Shin, Eunchul;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.5-14
    • /
    • 2007
  • The quantity of noxious wastes generated by the growth in industrialization and population in all over the world and its potential hazards in subsurface environments are becoming increasingly significant. The extraction of the contaminant from the soil and movement of the water are restricted due to the low permeability and adsorption characteristics of the reclaimed soils. Incorporated technique with PVDs have been used for dewatering from fine-grained soils for the purpose of ground improvement by means of soil flushing and soil vapor extraction systems. This paper is to evaluate several key parameters that affected to the performance of the PVDs specifically with regard to: well resistance of PVD, zone of influence, and smear effects. In the feasibility of contaminant remediation was evaluated in pilot-scale laboratory experiments. Well resistance is affected on the vertical discharge capacity of the PVDs under the various vacuum pressures. The discharge capacity increases consistently in areal extents with higher applied vacuum up to a limiting vacuum pressure. The head values for each piezometer at different vacuum pressures show that the largest head loss occurs within 14 cm of the PVD. Air flow rates and head losses were measured for the PVD placed in the model test box and the gas permeability of the silty soils was calculated. Increasing the equivalent diameter results in a decrease in the calculated gas permeability. It is concluded that the gas permeability determined over the 1,500 to 2,000 $cm^3/s$ flow rates are the most accurate values which yields gas permeability of about 3.152 Darcy.

  • PDF

Studies on Food Preservation by Controlling Water Activity 1. Measurement of Sorption Isotherm of Dried Filefish Muscle by Equilibration in Dynamic Stream of Conditioned Air (식품보장과 수분활성에 관한 연구 1. 조절기류에 의한 건조말쥐치육의 등온흡습곡선의 측정)

  • HAN Bong-Ho;CHOI Soo-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.189-193
    • /
    • 1981
  • An apparatus for continuous measurements of sorption isotherm of dried food was manufactured to shorten the time required for equilibration. The apparatus was so designed that the temperature, air velocity and relative humidity in the experimental chamber could be controlled. The use of dynamic stream of conditioned air with a velocity of 0.2m/sec, instead of static atmosphere, allowed a faster equilibration of dried filefish muscle at $25^{\circ}C$. The mean time necessary for the equilibration of dried filefish muscle at the water activity of a given state to a higher water activity was about 45 hours. The monolayer moisture content of dried filefish muscle calculated from BET-equation was 0.092 kg water /kg dry matter at $25^{\circ}C$.

  • PDF

Improvement of Electrochemical Reduction Characteristics of Carbon Dioxide at Porous Copper Electrode using Graphene (그래핀을 이용한 다공성 구리 전극의 전기화학적 이산화탄소 환원 능력 향상)

  • Bang, Seung Wan;Rho, Hokyun;Bae, Hyojung;Kang, Sung-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.105-109
    • /
    • 2018
  • We studied graphene synthesis to porous Cu to improve the characteristics of carbon dioxide reduction of cu. Cu powders were formed through Thermal Chemical Vapor Deposition(TCVD) to Porous Cu/Graphene structures synthesized with graphene. As a result of electrochemical experiments using a 0.1 M $KHCO_3$ electrolyte at an applied potential of -1.0 V to -1.4 V, the current density of Porous Cu/Graphene was 1.8 times higher than that of Porous Cu. As a result of evaluating the product, CO and $H_2$ were generated to Porous Cu electrode. On the other hand, the product of porous Cu/Graphene produced CO, $CH_4$ and $C_2H_4$. It is considered that the graphene causes longer carbon dioxide adsorption time, which means that the intermediates formed during the reaction remain on the electrode surface for a longer time. As a result, it can be concluded that the production reaction of the C2 compound could be continuously performed.

Intimate Understanding for Growth Mode of Graphene on Copper

  • Song, U-Seok;Jeon, Cheol-Ho;Kim, Su-Yeon;Kim, Yu-Seok;Kim, Seong-Hwan;Lee, Su-Il;Jeong, Dae-Seong;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.181-181
    • /
    • 2012
  • Direct synthesis of graphene using a chemical vapor deposition (CVD) has been considered a facile way to produce large-area and uniform graphene film, which is an accessible method from an application standpoint. Hence, their fundamental understanding is highly required. Unfortunately, the CVD growth mechanism of graphene on Cu remains elusive and controversial. Here, we present the evidences for two different growth modes of graphene on Cu investigated by varying carbon feedstock (C2H2 and CH4) and working pressure. The number of uniform graphene layer grown by C2H2 increased with increasing its injection time. A combined secondary ion mass spectrometry (SIMS) and X-ray diffraction (XRD) study revealed a carbon-diffused Cu layer created below surface region of Cu substrate with the expansion of Cu lattice. The graphene on Cu was grown by the diffusion and precipitation mode not by the surface adsorption mode, because similar results were observed in graphene/Ni system. The carbon-diffused Cu layer was also observed after graphene growth under high CH4 pressure. Based on various previous results and ours, we have successfully found that there are two selective growth modes for graphene on Cu substrate, and a desired mode can be chosen by tuning working pressure corresponding to the kind of carbon feedstock. We believe that this finding will shed light on high quality graphene growth and its multifaceted applications.

  • PDF