• Title/Summary/Keyword: Vapor Layer

Search Result 1,094, Processing Time 0.03 seconds

Water Vapor Permeability of SiO2 Oxidative Thin Film by CVD (CVD로 제작된 SiO2 산화막의 투습특성)

  • Lee, Boong-Joo;Shin, Hyun-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.1
    • /
    • pp.81-87
    • /
    • 2010
  • In this paper, we have fabricated $SiO_2$ oxidation thin films by HDP-CVD(high density plasma-chemical vapor deposition) method for passivation layer or barrier layer of OLED(organic light emitting diode). We have control and estimate the deposition rate and relative index characteristics with process parameters and get optimized conditions. They are gas flow rate($SiH_4:O_2$=30:60[sccm]), 70 [mm] distance from source to substrate and no-bias. The WVTR(water vapor transmission rate) is 2.2 [$g/m^2$_day]. Therefore fabricated thin film can not be applied as passivation layer or barrier layer of OLED.

Effects of Relative Humidity and Fiber Properties on the Moisture Permeability of Multilayer Fabric Systems (환경 및 섬유 특성이 멀티레이어 직물시스템의 투습성에 미치는 영향)

  • Suhyun Lee;Sohyun Park
    • Fashion & Textile Research Journal
    • /
    • v.25 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • This study aimed to determine the effects of relative humidity and fiber properties on the moisture permeability of multilayer systems by measuring water vapor transmission in the overlapping condition of various fabrics. The results confirmed that the property of the fabric in contact with the humid environment affects the moisture permeability. If the layer facing the humid environment is hydrophobic and the layer facing the dry environment is superhydrophobic, water vapor transmission increases by up to 17.8% compared to the opposite conditions. Comparing the correction values of the water vapor transmission reflecting the thickness of the specimen under the multilayer condition showed that permeability was higher when the hydrophilic or hydrophobic layer was facing the humid environment. The opposite was true from the "push-pull" effect of absorption mechanism. In the case of moisture permeability, the more hydrophilic the surface facing the humid environment, the more permeable that water vapor diffuses and passes through. It was concluded that the "pull-push" effect, in which water vapor diffuses widely through the hydrophilic facing a humid environment and then passes through the hydrophobic layer, contributes to the improvement of permeability. Permeability differed according to the multilayer overlapping condition. When the relative humidity was high, the "pull-push" effect was insignificant. This is caused by water droplets absorption after the partial migration of water due to condensation. These results suggest that the overlapping conditions and properties of fabrics should vary depending on heavy sweating or not.

The Effect of Liquid Water in Fuel Cell Cathode Gas Diffusion Layer on Fuel Cell Performance (가스 확산층(GDL)내부의 물이 연료전지 성능에 미치는 영향)

  • Park, Sang-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.374-380
    • /
    • 2015
  • In this paper, a dynamic model describing the 2 phase effect on the gas diffusion layer depending on load change of a fuel cell stack was developed to examine the effects of liquid water in fuel cell cathode gas diffusion layer on the fuel cell performance. For the developed model, 2 phase effect on the performance of a fuel cell stack depending on the load changes, concentration distribution of water vapor and oxygen inside a gas diffusion layer, the effect of the thickness and porosity of the gas diffusion layer on the fuel cell stack voltage were examined. As a result, a fuel cell stack voltage for the 2 phase model within the scope of the research become lower than that for the 1 phase model regardless of the load. Although oxygen molar concentration for the gas diffusion layer adjacent to the catalyst layer was the lowest, water vapor concentration is the highest. In addition, as thickness and porosity of the gas diffusion layer increased and decreased, respectively, the fuel cell stack voltage decreased.

Effect of Boron Carbide on the Morphology of SiC Conversion Layer of Graphite Substrate formed by Chemical Vapor Reaction (화학기상반응으로 흑연 위에 만든 SiC 반응층의 모양에 미치는 보론 카바이드의 영향)

  • Hong, Hyun-Jung;Riu, Doh-Hyung;Cho, Kwang-Youn;Kong, Eun-Bae;Shin, Dong-Geun;Shin, Dae-Kyu;Lee, Jae-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.445-450
    • /
    • 2007
  • A conversion layer of SiC was fabricated on the graphite substrate by a chemical vapor reaction method in order to enhance the oxidation resistance of graphite. The effect of boron carbide containing powder bed on the morphology of SiC conversion layer was investigated during the chemical vapor reaction of graphite with the reactive silicon-source at $1650^{\circ}C\;and\;1700^{\circ}C$ for 1 h. The presence of boron species enhanced the conversion of graphite into SiC, and altered the morphology of the conversion layer significantly as well. A continuous and thick SiC conversion layer was formed only when the boron source was used with the other silicon compounds. The boron is deemed to increase the diffusion of SiOx in SiC/C system.

Inductively Coupled Plasma Chemical Vapor Deposition System for Thin Film Ppassivation of Top Emitting Organic Light Emitting Diodes (전면발광 유기광소자용 박막 봉지를 위한 유도결합형 화학 기상 증착 장치)

  • Kim Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.538-546
    • /
    • 2006
  • We report on characteristics of specially designed inductively-coupled-plasma chemical vapor deposition (ICP-CVD) system for top-emitting organic light emitting diodes (TOLEDs). Using high-density plasma on the order of $10^{11}$ electrons/$cm^3$ generated by linear-type antennas connected in parallel and specially designed substrate cooling system, a 100 nm-thick transparent $SiN_{x}$ passivation layer was deposited on thin Mg-Ag cathode layer at substrate temperature below $50\;^{\circ}C$ without a noticeable plasma damage. In addition, substrate-mask chucking system equipped with a mechanical mask aligner enabled us to pattern the $SiN_x$ passivation layer without conventional lithography processes. Even at low substrate temperature, a $SiN_x$ passivation layer prepared by ICP-CVD shows a good moisture resistance and transparency of $5{\times}10^{-3}g/m^2/day$ and 92 %, respectively. This indicates that the ICP-CVD system is a promising methode to substitute conventional plasma enhanced CVD (PECVD) in thin film passivation process.

Measurement of Water Vapor Permeability of Bio-polymer Films (생고분자 필름의 투습도 측정)

  • Rhim, Jong-Whan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.1
    • /
    • pp.37-46
    • /
    • 1999
  • Water vapor permeability of films is commonly calculated from the water vapor transmission rate of the film measured using a permeability cup method which is essentially a gravimetric method. This method was originally developed for petroleum based plastic films with low water vapor permeability. In the case of hydrophilic bio-polymer films, the resistance caused by a stagnant air layer, which is developed between the underside of the film mounted on the cup and the surface of the desiccant saturated salt solution or distilled water, can be significant and, if neglected, ran lead to underestimation of water vapor transmission rates. Therefore, it is necessary to correct water vapor transmission rate data to accurately estimate the water vapor permeability of bio-polymer films.

  • PDF

Effects of Addition of Hydrogen and Water Vapor on Flame Structure and NOx Emission In $CH_4$-Air Diffusion Flame (메탄-공기 확산화염에서 수소와 수증기 첨가가 화염구조와 NOx 배출에 미치는 효과)

  • Park, Jeong;Keel, Sang-In;Yun, Jin-Han
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.171-181
    • /
    • 2007
  • Blending effects of hydrogen and water vapor on flame structure and NOx emission behavior are numerically studied with detailed chemistry in methane-air counterflow diffusion flames. The composition of fuel is systematically changed from pure methane and pure hydrogen to the blending fuels of methane-hydrogen-water vapor through the molar addition of $H_2O$. Flame structure is changed considerably for hydrogen-blending methane flames and hydrogen-blending methane flames diluted with water vapor in comparison to pure methane flame. These complicated changes of flame structures also affect NOx emission behavior considerably. The changes of thermal NO and Fenimore NO are analyzed for various combinations of the fuel composition. Importantly contributing reaction steps to thermal NO and Fenimore NO are addressed in pure methane, hydrogen-blending methane flames, and hydrogen-blending methane flames diluted with water vapor.

The Organic-Inorganic Hybrid Encapsulation Layer of Aluminium Oxide and F-Alucone for Organic Light Emitting Diodes

  • Gwon, Deok-Hyeon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.374-374
    • /
    • 2012
  • Nowadays, Active Matrix Organic Light-Emitting Diodes (AM-OLEDs) are the superior display device due to their vivid full color, perfect video capability, light weight, low driving power, and potential flexibility. One of the advantages of AM-OLED over Liquid Crystal Display (LCD) lies in its flexibility. The potential flexibility of AM-OLED is not fully explored due to its sensitivity to moisture and oxygen which are readily present in atmosphere, and there are no flexible encapsulation layers available to protect these. Therefore, we come up with a new concept of Inorganic-Organic hybrid thin film as the encapsulation layer. Our Inorganic layer is Al2O3 and Organic layer is F-Alucone. We deposited these layers in vacuum state using Atomic Layer Deposition (ALD) and Molecular Layer Deposition (MLD) techniques. We found the results are comparable to commercial requirement of 10-6 g/m2 day for Water Vapor Transmission Rate (WVTR). Using ALD and MLD, we can control the exact thin film thickness and fabricate more dense films than chemical or physical vapor deposition methods. Moreover, this hybrid encapsulation layer potentially has both the flexibility of organic layers and superior protection properties of inorganic layer.

  • PDF

Protective Layer on Active Layer of Al-Zn-Sn-O Thin Film Transistors for Transparent AMOLED

  • Cho, Doo-Hee;KoPark, Sang-Hee;Yang, Shin-Hyuk;Byun, Chun-Won;Cho, Kyoung-Ik;Ryu, Min-Ki;Chung, Sung-Mook;Cheong, Woo-Seok;Yoon, Sung-Min;Hwang, Chi-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.318-321
    • /
    • 2009
  • We have studied transparent top gate Al-Zn-Sn-O (AZTO) TFTs with an $Al_2O_3$ protective layer (PL) on an active layer. We also fabricated a transparent 2.5 inch QCIF+AMOLED display panel using the AZTO TFT back-plane. The AZTO active layers were deposited by RF magnetron sputtering at room temperature and the PL was deposited by ALD with two different processes. The mobility and subthreshold slope were superior in the cases of the vacuum annealing and the oxygen plasma PL compared to the $O_2$ annealing and the water vapor PL, however, the bias stability was excellent for the TFTs of the $O_2$ annealing and the water vapor PL.

  • PDF

Evaluation of Concentration Polarization at Feed in the Permeation of VOCs/$N_2$ mixtures through PDMS membrane (VOCs/질소 혼합물 증기투과시 공급액부 경계층에서의 농도분극 분석을 위한 모델식 확립)

  • 염충균;이상학;최정환;이정민
    • Membrane Journal
    • /
    • v.11 no.2
    • /
    • pp.74-82
    • /
    • 2001
  • By using a phenomenological approach, model equations incorporating the resistance-in¬series concept were established to evaluate quantitatively concentration polarization in the boundary layer in feed adjacent to the membrane surface in the vapor permeation and separation of volatile organic compounds (VOCS)/$N_2$ mixture through po]y(dimethylsiloxane) (PDMS) membrane. The vapor permeations of various VOCS/$N_2$ mixtures through PDMS membrane were carried out at various feed flow rates. Chlorinated hydrocarbons, such as, methylene chloride, chlorofonn, 1,2-clichloroethane and 1,1,2-trichloroethane were used as organic vapor. By fitting the model equations to the experimental penneation data. the model parameters were detennined. respectively. Both the mass transfer coefficient of VOC across tbe boundary layer and concentration polarization modulus as a measure of the extent of concentration polarization were eitimated Quantitatively by the mooe1 equations with the determined model parameters. From the analysis on the detennined model parameters, the boundary layer resistance due to the concentration polarization of VOCs component was found to be more significant when the condensability of voe was greater. This study seeks to emphasize the importance of the boundary resistance on the vapor penneation of the vapor/gas mixtures with high permeability and high selectivity towards the minor component VOC.

  • PDF