Browse > Article

Effects of Addition of Hydrogen and Water Vapor on Flame Structure and NOx Emission In $CH_4$-Air Diffusion Flame  

Park, Jeong (School of Mechanical Engineering, Pukyong National University)
Keel, Sang-In (Environment & Energy Research Division, Korea Institute of Machinery and Materials)
Yun, Jin-Han (Environment & Energy Research Division, Korea Institute of Machinery and Materials)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.18, no.2, 2007 , pp. 171-181 More about this Journal
Abstract
Blending effects of hydrogen and water vapor on flame structure and NOx emission behavior are numerically studied with detailed chemistry in methane-air counterflow diffusion flames. The composition of fuel is systematically changed from pure methane and pure hydrogen to the blending fuels of methane-hydrogen-water vapor through the molar addition of $H_2O$. Flame structure is changed considerably for hydrogen-blending methane flames and hydrogen-blending methane flames diluted with water vapor in comparison to pure methane flame. These complicated changes of flame structures also affect NOx emission behavior considerably. The changes of thermal NO and Fenimore NO are analyzed for various combinations of the fuel composition. Importantly contributing reaction steps to thermal NO and Fenimore NO are addressed in pure methane, hydrogen-blending methane flames, and hydrogen-blending methane flames diluted with water vapor.
Keywords
electrolysis products; emission index; fenimore NO; fuel consumption layer$H_2$-CO consumption layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. J. Kee, J. A. Miller, G. H. Evans; and G. Dixon-Lewis, 'A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flame,' Proc. Comb. Institut. Vol. 22, 1988, p. 1479
2 A. E. Lutz, R. J. Kee, J. F. Grcar and F. M. Rupley, 'A fortran program for computing opposed-flow diffusion flames', 1997, SAND 96-8243
3 C. K. Law and O. C. Kwon, 'Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation', Int J Hydrogen Energy, Vol. 29, 2004, pp. 867-879   DOI   ScienceOn
4 M. Ilbas, A. P. Crayford, I. Yilmaz, P. J. Bowen, and N. Syred, 'Laminar-burning velocities of hydrogen-air and hydrogen -methane-air mixtures: An experimental study', Int J Hydrogen Energy, Vol. 31, 2006, pp. 1768-1779   DOI   ScienceOn
5 J-Y. Ren, W. Qin, F. N. Egolfopoulos, and T. T. Tsotsis, 'Strain-rate Effects on hydrogen -enhanced lean premixed combustion', Combust Flame, Vol. 124, 2001, pp. 717-720   DOI   ScienceOn
6 R. J. Kee, F. M. Rupley, and J. A. Miller, 'Chemkin II: A fortran chemical kinetics package for analysis of gas phase chemical kinetics', SAND 89-8009B
7 Y. Ju, H. Guo, K. Maruta, and F. Liu, 'On the extinction limit and flammability limit of non-adiabatic stretched methane-air premixed flames', J Fluid Mech., Vol. 342, 1997, p. 315   DOI   ScienceOn
8 S. O. Bade Shresha and G. A. Karim, 'An investigation of the addition of dissociates water products to a gas fueled spark ignition engines', Int J Hydrogen Energy, Vol. 24, 1999, pp. 577-586   DOI   ScienceOn
9 H. K. Chellian, C. K. Law, T. Ueda, M. D. Smooke, and F. A. Williams, 'An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of methane-air-nitrogen diffusion flames', Proc. Comb. Institut., Vol. 23, 1990, p. 503
10 J. A. Miller and C. T. Bowman, 'Mechanism and modeling of nitrogen chemistry III combustion', Prog. Energy Combust Sci., Vol. 15, 1989, p. 287   DOI   ScienceOn
11 R. J. Kee, G. Dixon-Lewis, J. Wamatz, M. E. Coltrin, and J. A. Miller, 'A fortran computer code package for the evaluation of gas-phase multi-component transport', 1994, SAND 86-8246
12 C. G. Bauer and T. W. Forest, 'Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I: effect on SI engine performance', Int J Hydrogen Energy, Vol. 26, 2001, pp. 135-140
13 C. K. Westbrook and F. L. Dryer, 'Chemical kinetic modeling of hydrocarbon combustion', Prog Energy Combust Sci., 10, 1984, pp. 1-57   DOI   ScienceOn
14 R. W. Schefer, D. M. Wicksall, and A. K. Agrawal, 'Combustion of hydrogen-enriched methane in a lean premixed swirl-stabilized burner', Proc. of the Combustion Institute, Vol. 29, 2002, pp. 843-851
15 M. Nishioka, S. Nakagawa, Y. Ishikawa, and T. Takeno, 'NO emission characteristics of methane-air double flame', Combust. Flame, Vol. 98, 1994, pp. 127-36   DOI   ScienceOn
16 G. P. Smith, D. M. Golden, N. W. Frenklach, M. B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Dong, W. C. Gardiner, Jr.-VV. Lissianski, and Z. Qin, 'The 'GRl-Mech 3.0' chemical kinetic mechanism,' , 2007