• Title/Summary/Keyword: Vapor Deposition Process

Search Result 765, Processing Time 0.041 seconds

Laser-induced chemical vapor deposition of tungsten micro patterns for TFT-LCD circuit repair (레이저 국소증착을 이용한 TFT-LCD회로 수정5 미세 텅스텐 패턴 제조)

  • Park Jong-Bok;Kim Chang-Jae;Park Sang-Hyuck;Shin Pyung-Eun;Kang Hyoung-Shik;Jeong Sung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.165-173
    • /
    • 2005
  • This paper presents the results for deposition of micrometer-scale metal lines on glass for the development of TFT-LCD circuit repair-system. Although there had been a few studies in the late 1980's for the deposition of metallic interconnects by laser-induced chemical vapor deposition, those studies mostly used continuous wave lasers. In this work, a third harmonic Nd:YLF laser (351nm) of high repetition rates, up to 10 KHz, was used as the illumination source and W(CO)s was selected as the precursor. General characteristics of the metal deposit (tungsten) such as height, width, morphology as well as electrical properties were examined for various process conditions. Height of the deposited tungsten lines ranged from 35 to 500 m depending on laser power and scan speed while the width was controlled between 50um using a slit placed in the beam path. The resistivity of the deposited tungsten lines was measured to be below $1{\Omega}{\cdotu}um$, which is an acceptable value according to the manufacturing standard. The tungsten lines produced at high scan speed had good surface morphology with little particles around the patterns. Experimental results demonstrated that it is likely that the deposit forms through a hybrid process, namely through the combination of photolytic and pyrolytic mechanisms.

Chemical Vapor Deposition of Tantalum Carbide from TaCl5-C3H6-Ar-H2 System

  • Kim, Daejong;Jeong, Sang Min;Yoon, Soon Gil;Woo, Chang Hyun;Kim, Joung Il;Lee, Hyun-Geun;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.597-603
    • /
    • 2016
  • Tantalum carbide, which is one of the ultra-high temperature ceramics, was deposited on graphite by low pressure chemical vapor deposition from a $TaCl_5-C_3H_6-Ar-H_2$ mixture. To maintain a constant $TaCl_5/C_3H_6$ ratio during the deposition process, $TaCl_5$ powders were continuously fed into the sublimation chamber using a screw-driven feeder. Sublimation behavior of $TaCl_5$ powder was measured by thermogravimetric analysis. TaC coatings have various phases such as $Ta+{\alpha}-Ta_2C$, ${\alpha}-Ta_2C+TaC_{1-x}$, and $TaC_{1-x}$ depending on the powder feeding methods, the $C_3H_6/TaCl_5$ ratio, and the deposition temperatures. Near-stoichiometric TaC was obtained by optimizing the deposition parameters. Phase compositions were analyzed by XRD, XPS, and Raman analysis.

Burke-Schumann analysis of silica formation by hydrolysis in an external chemical vapor deposition process (외부 화학증착 공정에서의 가수분해반응으로 인한 실리카 생성에 대한 버크-슈만 해석)

  • Song, Chang-Geol;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1671-1678
    • /
    • 1996
  • In external chemical vapor deposition processes including VAD and OVD the distribution of flame-synthesized silica particles is determined by heat and mass transfer limitations to particle formation. Combustion gas flow velocities are such that the particle diffusion time scale is longer than that of gas flow convection in the zone of particle formation. The consequence of these effects is that the particles formed tend to remain along straight smooth flow stream lines. Silica particles are formed due to oxidation and hydrolysis. In the hydrolysis, the particles are formed in diffuse bands and particle formation thus requires the diffusion of SiCl$\_$4/ toward CH$\_$4//O$\_$2/ combustion zone to react with H$\_$2/O diffusing away from these same zones on the torch face. The conversion kinetics of hydrolysis is fast compared to diffusion and the rate of conversion is thus diffusion-limited. In the language of combustion, the hydrolysis occurs as a Burke-Schumann process. In selected conditions, reaction zone shape and temperature distributions predicted by the Burke-Schumann analysis are introduced and compared with experimental data available. The calculated centerline temperatures inside the reaction zone agree well with the data, but the calculated values outside the reaction zone are a little higher than the data since the analysis does not consider diffusion in the axial direction and mixing of the combustion products with ambient air. The temperatures along the radial direction agree with the data near the centerline, but gradually diverge from the data as the distance is away from the centerline. This is caused by the convection in the radial direction, which is not considered in the analysis. Spatial distribution of silica particles are affected by convection and diffusion, resulting in a Gaussian form in the radial direction.

Analysis of Radiative Heat Transfer and Mass Transfer During Multi-Wafer Low Pressure Chemical Vapor Deposition Process (저압 증기 화합물 증착 공정에서 복사열전달 및 물질전달 해석)

  • Park, Kyoung-Soon;Choi, Man-Soo;Cho, Hyoung-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.9-20
    • /
    • 2000
  • An analysis of heat and mass transfer has been carried out for multi-wafer Low Pressure Chemical Vapor Deposition (LPCVD). Surface radiation analysis considering specular radiation among wafers, heaters, quartz tube and side plates of the reactor has been done to determine temperature distributions of 150 wafers in two dimensions. Velocity, temperature and concentration fields of chemical gases flowing in a reactor with multi-wafers have been then determined, which determines Si deposition growth rate and uniformity on wafers using two different surface reaction models. The calculation results of temperatures and Si deposition have been compared and found to be in a reasonable agreement with the previous experiments.

Thin Film Morphology Pentacene Thin Film Using Low-Pressure Gas Assisted Organic Vapor Deposition(LP-GAOVD)

  • Ahn, Seong-Deok;Kang, Seung-Youl;Lee, Yong-Eui;Kim, Chul-Am;Joung, Meyong-Ju;Suh, Kyung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.998-1000
    • /
    • 2003
  • We have investigated thin film morphology of pentacene thin films by the process of low-pressure gas assisted organic vapor deposition (LP-GAOVD). Source temperature, inert gas flow rate, substrate temperature and deposition pressure during film deposition is used to vary the growth rate, thin film morphology and the crystalline grain size of pentacene thin films. The electrical properties of pentacene thin films for applications in organic thin film transistor and electrophoretic displays will be discussed.

  • PDF

The Spectroscopic Ellipsometry Application to the Diamond Thin Film Growth Using Carbon Monoxide(CO) as a Carbon Source (탄소의 원료로 일산화탄소를 사용한 다이아몬드 박막 성장 관찰에 대한 분광 Ellipsometry의 응용)

  • 홍병유
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.371-377
    • /
    • 1998
  • The plasma chemical vapor deposition is one of the most utilized techniques for the diamond growth. As the applications of diamond thin films prepared by plasma chemical vapor deposition(CVD) techniques become more demanding, improved fine-tuning and control of the process are required. The important parameters in diamond film deposition include the substrate temperature, $CO/H_2$gas flow ratio, total gas pressure, and gas excitation power. With the spectroscopic ellipsometry, the substrate temperature as well as the various parameters of the film can be determined without the physical contact and the destructiveness under the extreme environment associated with the diamond film deposition. Through this paper, the important parameters during the diamond film growth using $CO+H_2$are determined and it is shown that $sp^2$ C in the diamond film is greatly reduced.

  • PDF

USE OF SINGLE PRECURORS FOR THE PREP ARATION OF SILICON CARBIDE FILMS

  • Lee, Kyunf-Won;Yu, Kyu-Sang;Kim, Yun-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.467-473
    • /
    • 1996
  • Heteroepitaxial growth of cubic silicon carbide films on Si(001) and Si(111) substrates at temperatures 900-$1000^{\circ}C$ has been achieved by high vacuum chemical vapor deposition using the single precursor 1, 3-disilabutane without carrying out the carbonization process of the substrate surfaces. The deposition temperature range is much lowered compared with conventiontional chemical vapor deposition where separate sources for silicon and carbon are employed. The deposition procedure is quite simple and safe. The qualities of the films were found to be very good judging from the results obtained by various characterization techniques including reflection high energy electron diffraction, X-ray diffraction, X-ray pole figure analysis, Rutherford backscattering spectrometry, Auger depth profiling, and transmission electron diffraction.

  • PDF

Structure dependence of carbon nanotube on the process parameters using microwave plasma chemical vapor deposition

  • Kim, Gwang-Bai;Lee, Soo-Myun;Uh, Hyung-Soo;Park, Sang-Sik;Cho, Euo-Sik;Kwon, Sang-Jik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.678-680
    • /
    • 2002
  • Vertically aligned carbon nanotubes(CNTs) have been grown on Ni-coated TiN/Si substrate by microwave plasma chemical vapor deposition using $H_2/CH_4$ mixture gas. We have investigated the Effect of process parameters on the growth of CNT. During the growth, microwave power, pressure, and growth temperature were varied from 300 W to 700 W, 10 Torr to 30 Torr, and 300 $^{\circ}C$ to 700 $^{\circ}C$. respectively. Then we controlled the size of CNTs. The structure of CNT was sensitively dependent on the process parameters.

  • PDF

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF

Synthesis of Graphene on Ni/SiO2/Si Substrate by Inductively-Coupled Plasma-Enhanced Chemical Vapor Deposition (유도결합 플라즈마 화학기상증착법을 이용한 Ni/SiO2/Si 기판에서 그라핀 제조)

  • Park, Young-Soo;Huh, Hoon-Hoe;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.522-526
    • /
    • 2009
  • Graphene has been effectively synthesized on Ni/SiO$_2$/Si substrates with CH$_4$ (1 SCCM) diluted in Ar/H$_2$(10%) (99 SCCM) by using an inductively-coupled plasma-enhanced chemical vapor deposition. Graphene was formed on the entire surface of the 500 nm thick Ni substrate even at 700 $^{\circ}C$, although CH$_4$ and Ar/H$_2$ gas were supplied under plasma of 600 W for 1 second. The Raman spectrum showed typical graphene features with D, G, and 2D peaks at 1356, 1584, and 2710 cm$^{-1}$, respectively. With increase of growth temperature to 900 $^{\circ}C$, the ratios of the D band intensity to the G band intensity and the 2D band intensity to the G band intensity were increased and decreased, respectively. The results were strongly correlated to a rougher and coarser Ni surface due to the enhanced recrystallization process at higher temperatures. In contrast, highquality graphene was synthesized at 1000 $^{\circ}C$ on smooth and large Ni grains, which were formed by decreasing Ni deposition thickness to 300 nm.