• Title/Summary/Keyword: Vapor Deposition Process

Search Result 765, Processing Time 0.045 seconds

Reduction of Plasma Process Induced Damage during HDP IMD Deposition

  • Kim, Sang-Yung;Lee, Woo-Sun;Seo, Yong-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.14-17
    • /
    • 2002
  • The HDP (High Density Plasma) CVD process consists of a simultaneous sputter etch and chemical vapor deposition. As CMOS process continues to scale down to sub- quarter micron technology, HDP process has been widely used fur the gap-fill of small geometry metal spacing in inter-metal dielectric process. However, HBP CVD system has some potential problems including plasma-induced damage. Plasma-induced gate oxide damage has been an increasingly important issue for integrated circuit process technology. In this paper, thin gate oxide charge damage caused by HDP deposition of inter-metal dielectric was studied. Multiple step HDP deposition process was demonstrated in this work to prevent plasma-induced damage by introducing an in-situ top SiH$_4$ unbiased liner deposition before conventional deposition.

A Thermodynamic Analysis on Silicon Consumption during The Chemical Vapper Deposition of Tungsten (텅스텐의 화학증착시 Si소모에 관한 열역학적 분석)

  • 정태희;이정중
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.1
    • /
    • pp.27-33
    • /
    • 1990
  • Thermodynamic analysis on silicon consumpton during the chemical vapor deposition of tungten was carried out by calculation equilibrium concerations of all possible product species utilizing a computer progrom according to VCS.(Villars-Cruise-Smith) algorithm. The calculation could show various reaction paths which dominate the tungsten deposition under different process conditions. According to the calculation, the consumption of silicon can also be reduced at a lower total pressure SiH4 without H2 as the reacting gas is most effective for suppression of the excessive consumption of silicon during the deposition process.

  • PDF

Growth of epitaxial silicon by hot-wall chemical vapor deposition (CVD) technique and its thermochemical analysis (고온벽 화학기상증착법을 이용한 에피 실리콘 증착과 열화학적 해석)

  • 윤덕선;고욱현;여석기;이홍희;박진호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.4
    • /
    • pp.215-221
    • /
    • 2002
  • Epitaxial Si layers were deposited on (100) Si substrates by hot-wall chemical vapor deposition (CVD) technique using the $SiH_2Cl_2/H_2$chemistry. Thermochemical calculations of the Si-H-Cl system were carried out to predict the window of actual Si deposition process and to investigate the effects of process variables (i.e., deposition temperature, reactor pressure, and input gas molar ratio ($H_2/SiH_2Cl_2$)) on the epitaxial growth. The calculated results were in good agreement with the experiment. Optimum process conditions were found to be the deposition temperature of 850~$950^{\circ}C$, the reactor pressure of 2~5 Torr, and the input gas molar ratio ($H_2/SiH_2Cl_2$) of 30~70, providing device-quality epitaxial layers.

Preparation of Alumina Composite Membranes by Chemical Vapor Deposition (화학기상증착법을 이용한 알루미나 복합 분리막의 제조)

  • 안상욱;최두진;현상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.927-933
    • /
    • 1994
  • Alumina composite membranes were prepared by chemical vapor deposition (CVD) using aluminum-tri-isopropoxide as a precursor. Porous alumina supports were used in deposition, which were in disk shape with mean pore diameter of 0.1 ${\mu}{\textrm}{m}$ and prepared by slip-coasting process. film deposition morphology on porous support was simulated through depositing alumina film on polycrystalline silicon pattern, and its step coverage observed by SEM showed one deviated from uniform step coverage. N2 permeability through composite membranes and the pressure dependence decreased as the deposition time increased. Initially, the N2 permeability of the top layer was tend to decrease rapidly, and then the degree of decrease in N2 permeability was tend to diminish with deposition time. The N2 permeability increased with heat treatment temperature and the crack was generated in top layer at 100$0^{\circ}C$.

  • PDF

A study of unsteady heat and mass transfer in the modified chemical vapor deposition process (수정된 화학증착방법에서 비정상 열 및 물질전달 해석)

  • Park, Gyeong-Sun;Choe, Man-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.79-88
    • /
    • 1997
  • An analysis of unsteady heat and mass transfer in the Modified Chemical Vapor Deposition has been carried out including the effects of chemical reaction and variable properties. It was found that commonly used quasi-steady state assumption could be used to predict overall efficiency of deposition, however, the assumption would not provide detailed deposition profile. The present unsteady calculations of wall temperature profile and deposition profile have been compared with the existing experimental data and were in good agreement. The effects of variable torch speed were studied. Linearly varying torch speed case until time=120s resulted in much shorter tapered entry than the constant torch speed case.

OLED display manufacturing by Organic Vapor Phase Deposition

  • Marheineke, B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1676-1681
    • /
    • 2006
  • We report on Organic Vapor Phase Deposition $(OVPD^{(R)})$ an innovative deposition technology for organic light emitting device (OLED) and organic semiconductor manufacturing. The combination of $OVPD^{(R)}$ with Close Coupled Showerhead (CCS) technology results in manufacturing equipment with vast potential for cost effective manufacturing of OLED displays commercially competitive to LCD. The actual $OVPD^{(R)}$ equipment concept and design is discussed: Computational Fluid Dynamic (CFD) modeling is compared with experimental results proving the excellent controllability of the deposition process. Further other production relevant deposition properties are being reviewed e.g. high deposition rates and high organic material utilization efficiency of the $OVPD^{(R)}$ - Technology. Data from devices made by $OVPD^{(R)}$ show comparable/ superior performance to those fabricated with conventional vacuum thermal evaporation (VTE) techniques. An outlook on further potentials of $OVPD^{(R)}$ with respect to enabling advanced organic device structures is given.

  • PDF

Studies on Film Growth and Mechanical Properties of TiN by Chemical Vapor Deposition (화학증착에 의한 TiN 박막의 제조 및 기계적 성질에 관한 연구)

  • 김시범;김광호;천성순
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.21-30
    • /
    • 1989
  • Titanium Nitride (TiN) was deposited onto the SKH9 tool steels by chemical vapor deposition (CVD) using a gaseous mixture of TiCl4, N2, and H2. The effects of the deposition temperature and input gas composition on the deposition rate, microstructure, preferred orientation, microhardness and wear resistance of TiN deposits were studied. The experimental results showed that the TiN deposition is thermally activated process with an apparent activation energy of about 27Kcal/mole in the temperature range between 1200$^{\circ}$K and 1400$^{\circ}$K. As H2/N2 gas input ratio increased, the deposition rate increased, showed maximum at H2/N2 gas input ratio of 1.5 and then decreased. Mechanical properties such as microhardness and wear resistance have close relation with the microstructure and preferred orientation of TiN deposits. It is suggested that the equiaxed structure with random orientation increases the microhardness and wear resistance of TiN deposits.

  • PDF

Numerical Modeling of Deposition Uniformity in ICP-CVD System (수치모델을 이용한 ICP-CVD 장치의 증착 균일도 해석)

  • Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.279-286
    • /
    • 2008
  • Numerical analysis is done to investigate which would be the most influencing process parameter in determining the uniformity of deposition thickness in TiN ICP-CVD(inductively coupled plasma chemical vapor deposition). Two configurations of ICP antenna are modeled; side and top planar. Side and top gas inlets are considered with each ICP antenna geometries. Precursor for TiN deposition was TDMAT(Tetrakis Diethyl Methyl Amido Titanium). Two step volume dissociation of TDMAT is used and absorption, desorption and deposition surface reactions are included. Most influencing factors are H and N concentration dissociated by electron impact collisions in plasma volume which depends on the relative positions of gas inlet and ICP antenna generated hot plasma region. Low surface recombination of N shows hollow type concentration, but H gives a bell type distribution. Film thickness at substrate edges is sensitive to gas flow rate and at high pressures getting more dependent on flow characteristics.

Microstructure Analysis of Carbon Nanotubes Grown by Plasma Enhanced Chemical Vapor Deposition (플라즈마 화학기상증착법으로 성장시킨 탄소나노튜브의 미세구조 분석)

  • Yoon Jongsung;Yun Jondo;Park Jongbong;Park Kyeongsu
    • Korean Journal of Materials Research
    • /
    • v.15 no.4
    • /
    • pp.246-251
    • /
    • 2005
  • Plasma enhanced chemical vapor deposition(PE-CVD) method has an advantage in synthesizing carbon nanotubes(CNTs) at lower temperature compared with thermal enhanced chemical vapor deposition(TE-CVD) method. In this study, CNTs was prepared by using PE-CVD method. The growth rate of CNT was faster more than 100 times on using Invar alloy than iron as catalyst. It was found that chrome silicide was formed at the interface between chrome layer and silicon substrate which should be considered in designing process. Nanoparticles of Invar catalyst were found oxidized on their surfaces with a depth of 10 m. Microstructure was analyzed by scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray spectrometry. Based on the result of analysis, growth mechanism at an initial stage was suggested.

$C_{x}F_{y}$ Polymer Film Deposition in rf and dc $C_{7}F_{16}$ Vapor Plasmas

  • Sakai, Y.;Akazawa, M.;Sakai, Yosuke;Sugawara, H.;Tabata, M.;Lungu, C.P.;Lungu, A.M.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • $C_{x}F_{y}$ polymer film was deposited in rf and dc Fluorinert vapor ($C_{7}F_{16}$) plasmas. In the plasma phase, the spatial distribution of optical emission spectra and the temporal concentration of decomposed species were monitored, and kinetics of the $C_{7}F_{16}$ decomposition process was discussed. Deposition of $C_{x}F_{y}$ film has been tried on substrates of stainless steel, glass, molybdenum and silicon wafers at room temperature in the vapor pressures of 40 and 100 Pa. The films deposited in the rf plasma showed excellent electrical properties as an insulator for multi-layered interconnection of deep-submicron LSI, i.e. the low dielectric constant ∼2.0, the dielectric strength ∼2 MV/cm and the high deposition rate ∼100nm/min at 100W input power.

  • PDF