• 제목/요약/키워드: Van Hiele theory

검색결과 18건 처리시간 0.022초

"평행사변형은 사다리꼴이다."에서 '이다'에 대한 고찰 (A Study on the Word 'is' in a Sentence "A Parallelogram is Trapezoid.")

  • 이규희;최영기
    • 대한수학교육학회지:학교수학
    • /
    • 제18권3호
    • /
    • pp.527-539
    • /
    • 2016
  • "평행사변형은 사다리꼴이다."에서 '이다'는 애매하고 그 의미가 매우 풍부한 기호이다. 이 연구는 일상적 언어 '이다'가 문맥과 상황에 따라 다양하게 해석되는 의미원소임을 밝히고 수학에서 사용되는 '이다'의 의미를 구분하여 논의한다. 그리고 '동일성'의 관념에 주목하여, 수학적으로 '같음'을 나타내기 위해 사용되기도 하는 '이다'를 동치관계의 개념과 Van Hieles의 기하 사고 수준 이론으로 재해석하여 살펴본다. 수학적 기호로서 '이다'에 대한 분석 결과 '이다'는 수학적 아이디어를 의미 있게 생성하는 데 중요한 의의가 있다고 판단된다.

Developing Geometry Software for Exploration-Geometry Player

  • Yuan, Yuan;Lee, Chun-Yi;Huang, Jiung-Rong
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제11권3호
    • /
    • pp.209-218
    • /
    • 2007
  • The purpose of this study is to create an interactive tool Geometry Player for geometric explorations. In designing this software, we referred to van Hiele's geometric learning theory of and Duval's cognitive comprehension theory of geometric figures. With Geometry Player, it is easy to construct and manipulate dynamic geometric figures. Teachers can easily present the dynamic process of geometric figures in class, and students can use it as a leaning tool to construct geometric concepts by themselves. It is hoped that Geometry Player can be a useful assistant for teachers and a nice partner for students. A brief introduction to Geometry Player and some application examples are included in this paper.

  • PDF

도형 학습을 위한 어드벤처 게임형 학습 프로그램 개발 (Development of Adventure-Game style Program for Figure Learning)

  • 이재무;김민희
    • 한국게임학회 논문지
    • /
    • 제6권3호
    • /
    • pp.33-42
    • /
    • 2006
  • 본 연구는 초등학교 수학과 도형 영역에서의 수준별 학습을 지원하기 위한 어드벤처 게임형 학습 프로그램을 개발하는 것이다. 제7차 교육과정에서는 학생의 능력, 적성, 필요, 흥미 에 대한 개인차를 최대로 고려하는 수업을 통하여 학생 개개인의 성장 잠재력과 교육의 효율성을 극대화할 수 있도록 수준별 교육과정을 도입하였다. 그러나 수준차가 심한 다인수 학급체제에서 학생들의 개인차를 고려한 개별화 학습을 실시하여 교육의 수월성을 추구하기에는 많은 어려움이 있다. 따라서, 본 연구는 van Hiele 이론을 적용한 수준별 게임 학습을 제공하고, 학습자들의 흥미와 관심을 높일 수 있는 어드벤처 게임형 학습 프로그램을 개발하였다. 본 프로그램은 심화 보충학습이 필요한 학습자들에게 개인차를 고려한 수준별 학습을 지원하여 학업 성취도를 높일 수 있을 것이며 공간 지각 능력이 필요한 도형 학습에서 다양한 조작활동을 제공함으로써 학습자들의 공간 감각을 기를 수 있을 것이다.

  • PDF

The Effect of Solid Geometry Activities of Pre-service Elementary School Mathematics Teachers on Concepts Understanding and Mastery of Geometric Thinking Levels

  • Patkin, Dorit;Sarfaty, Yael
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제16권1호
    • /
    • pp.31-50
    • /
    • 2012
  • The present study explored whether the implementation of focused activities (intervention programme) can enhance 22 pre-service mathematics teachers' proficiency in solid geometry thinking level as well as change for the better their feelings in this discipline. Over a period of 6 weeks the pre-service teachers participated in activities and diversified experiences with 3D shapes, using illustration aids and actual experience of building 3D shapes in relation to the various spatial thinking levels. The research objectives were to investigate whether the intervention programme, comprising task-oriented activities of solid geometry, enhance mathematics pre-service teachers' mastery of their geometric thinking levels as well as examine their feelings towards this discipline before and after the intervention programme. The findings illustrate that learners' levels of geometric thinking can be promoted, entailing control on higher thinking levels as well as a more positive attitude towards this field.

Cabri II를 활용한 도형의 교수-학습 방안 - 반힐이론을 중심으로 - (A Teaching-Learning Method of Figures Using Cabri II - Focused on the theory of van Hiele -)

  • 최수정;표용수
    • 대한수학교육학회지:학교수학
    • /
    • 제2권1호
    • /
    • pp.165-181
    • /
    • 2000
  • The teaching-learning methods of figures using computers make loose the difficulties of geometry education from the viewpoint that the abstract figures can be visualized and that by means of this visualization the learning can be accomplished through the direct experience or control. In this thesis, we present a teaching-learning method of figures using Cabri II so that the learners establish their knowledge obtained through their search, investigation, supposition and they accomplish the positive transition to advanced 1earning. So the learners extend their ability of sensuous intuition to their ability of logical reasoning through their logical intuition.

  • PDF

수학 영재 교육 대상 학생의 기하 인지 수준과 증명 정당화 특성 분석 (An Analysis of Justification Process in the Proofs by Mathematically Gifted Elementary Students)

  • 김지영;박만구
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제14권1호
    • /
    • pp.13-26
    • /
    • 2011
  • 본 연구의 목적은 초등수학 영재 교육 대상 학생들의 기하 인지 수준과 그들이 증명을 전개하는 과정에서 논리적인 정당화의 특성을 분석하고 이를 기반으로 수학 영재 교육을 위한 시사점을 제시하는 것이다. 이를 위하여 서울특별시 A영재교육원에 재학 중인 5, 6학년 학생 18명을 대상으로 그들의 기하 수준을 확인하고 그들이 기하문제를 증명을 하고 설명하는 과정에서 어떤 논리적인 정당화를 해 가는지 분석하였다. 연구 결과 이들은 van Hieles의 기하 사고의 0수준부터 4수준 중에서 대부분 2∼3수준에 있었다. 그리고 증명의 정당화 과정에서 이 영재 교육 대상 학생들은 잘라 붙이기와 수치적 접근을 사용하려는 시도와 이미 선행으로 학습한 내용의 기억을 되살려 사용하는 예가 많았고, 독창적이고 일반적인 증명으로 이끌어가는 데는 어려움을 가지고 있었다. 따라서 초등수학 영재 교육 대상자들을 위한 교육은 이들의 수준에 맞는 보다 정교화된 과제로 이들이 자신들의 증명의 정당화 과정을 인지하면서 보다 창의적이고 연역적 사고의 수준으로 이끌어 줄 필요가 있다.

기하 학습을 위한 문제해결 도구 개발 및 적용 (A Development and Applications of Problem Solving Tool for Learning Geometry)

  • 배진성;김갑수
    • 정보교육학회논문지
    • /
    • 제14권3호
    • /
    • pp.449-459
    • /
    • 2010
  • 초등학교 도형 학습에 컴퓨터 프로그램을 활용하면 도형에 대한 다양한 조작 기능을 제공하여 학습의 효과를 높일 수 있으며, 탐구적 환경을 조성함으로써 교실 환경의 한계를 극복할 수 있다. 지금까지의 연구는 컴퓨터 프로그램을 활용한 도구들을 개발하였지만 콘텐츠 없이 도구이다. 본 연구는 Van Hieles의 기하 학습수준이론에 기초하여 초등학교 수학과 교육과정의 도형 영역을 분석하고, 초등학생들의 인지 수준에 적합한 도형 학습 문제 해결 도구(Geometry For Kids : GeoKids)를 개발한다. 학생들의 인지 수준을 고려하여 자와 컴퍼스를 대신할 수 있도록 만들었고, 원과 직선을 마우스를 사용하여 쉽게 그릴 수 있고, 보다 정확한 작도를 위하여 점과 원의 경계를 자동으로 인식하도록 구성하였다. 수학과 교육과정의 도형 학습 주제에 따라 GeoKids의 기능을 연계한 학습을 할 수 있다.

  • PDF

스핑크스퍼즐로 모든 삼각형 해법 찾기 과제에서 나타나는 학생들의 수학적 사고 특성 분석 (Analysis of Students' Mathematical Thinking Characteristics Appeared in the Process of Searching for All type of Triangle that Can be Made with Sphinx Puzzle)

  • 방신영;송상헌
    • 한국초등수학교육학회지
    • /
    • 제17권1호
    • /
    • pp.165-184
    • /
    • 2013
  • 본 연구는 van Hiele이 소개한 7조각 모자이크퍼즐(이하 스핑크스퍼즐)을 도형 교육이나 수학적 사고 교육에 효과적으로 적용하는 방안을 모색하고자 한다. 이를 위해 Dienes의 수학학습 6단계 이론을 적용한 수업에서 학생들의 수학적 사고 특성을 분석하는 것을 목적으로 한다. 총 3차시에 걸쳐 학급 전체를 대상으로 한 수업에서 연구자는 수업의 진행자 및 관찰자로 활동하였다. 보다 세밀한 분석을 위해 관찰 대상은 학업성취도가 상위권 및 중위권인 초등학교 6학년 4명의 학생으로 제한하였다. 학생들에게 제시한 최종 과제는 <스핑크스퍼즐로 만들 수 있는 서로 다른 크기의 모든 삼각형의 개수와 그 도형들의 보다 깔끔한 해법 찾기>이다. 이 과제를 해결하는 동안 학생들에게서 나타나는 수학적 사고 특성을 편동중남(片桐重男)의 수학적 사고 태도 중 조작의 사고, 연역적 사고, 보다 나은 방법을 알아보려는 태도를 중심으로 분석하고 이로부터 시사점을 도출하였다.

  • PDF