• Title/Summary/Keyword: Valve simulation

Search Result 696, Processing Time 0.028 seconds

A multi-layer approach to DN 50 electric valve fault diagnosis using shallow-deep intelligent models

  • Liu, Yong-kuo;Zhou, Wen;Ayodeji, Abiodun;Zhou, Xin-qiu;Peng, Min-jun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.148-163
    • /
    • 2021
  • Timely fault identification is important for safe and reliable operation of the electric valve system. Many research works have utilized different data-driven approach for fault diagnosis in complex systems. However, they do not consider specific characteristics of critical control components such as electric valves. This work presents an integrated shallow-deep fault diagnostic model, developed based on signals extracted from DN50 electric valve. First, the local optimal issue of particle swarm optimization algorithm is solved by optimizing the weight search capability, the particle speed, and position update strategy. Then, to develop a shallow diagnostic model, the modified particle swarm algorithm is combined with support vector machine to form a hybrid improved particle swarm-support vector machine (IPs-SVM). To decouple the influence of the background noise, the wavelet packet transform method is used to reconstruct the vibration signal. Thereafter, the IPs-SVM is used to classify phase imbalance and damaged valve faults, and the performance was evaluated against other models developed using the conventional SVM and particle swarm optimized SVM. Secondly, three different deep belief network (DBN) models are developed, using different acoustic signal structures: raw signal, wavelet transformed signal and time-series (sequential) signal. The models are developed to estimate internal leakage sizes in the electric valve. The predictive performance of the DBN and the evaluation results of the proposed IPs-SVM are also presented in this paper.

A Methodology for Evaluating the Superiority between Different Valve Distributions Based on Pipe and Valve Failure Simulation (상수관로와 밸브 파괴모의를 기반으로 한 다른 제수밸브 분포간의 우열성 평가방법)

  • Jun, Hwan-Don;Park, Su-Wan
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.6 s.179
    • /
    • pp.495-502
    • /
    • 2007
  • For a water distribution system, it is necessary to evaluate the superiority between different valve distributions in order to improve the reliability of the water distribution system. In cases of placing more valves to an exiting system or building a new system, we suggest a methodology to select a proper valve distribution after various valve distributions are compared. The suggested methodology is based on simulations of pipe and valve failures to estimate failure impacts of the water distribution system due to pipe and valve failures. It is quantified by the number of customers out of service per pipe failure resulted from pipe and valve failures. To demonstrate its applicability, the methodology is applied to a real water distribution system with two different valve distributions and determines the superiority between those valve distributions. Also, customers out of service along with various valve reliabilities are estimated for those valve distributions to prove the effect of the valve reliability on the reliability of a water distribution system.

Analysis of Design Parameters For Shunt Valve and Anti-Siphon Device Used to Treat Patients with Hydrocephalus

  • Lee, Chong-Sun;Jang, Jong-Yun;Suh, Chang-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.1061-1071
    • /
    • 2001
  • The present study investigated design parameters of shunt valves and anti-siphon device used to treat patients with hydrocephalus. The shunt valve controls drainage of cerebrospinal fluid (CSF) through passive deflection of a thin and small diaphragm. The anti-siphon device(ASD) is optionally connected to the valve to prevent overdrainage when the patients are in the standing position. The major design parameters influencing pressure-flow characteristics of the shunt valve were analyzed using ANSYS structural program. Experiments were performed on the commercially available valves and showed good agreements with the computer simulation. The results of the study indicated that predeflection of the shunt valve diaphragm is an important design parameter to determine the opening pressure of the valve. The predeflection was found to depend on the diaphragm tip height and could be adjusted by the diaphragm thickness and its elastic modulus. The major design parameters of the ASD were found to be the clearance (gap height) between the thin diaphragm and the flow orifice. Besides the gap height, the opening pressure of the ASD could be adjusted by the diaphragm thickness, its elastic modulus, area ratio of the diaphragm to the flow orifice. Based on the numerical simulation which considered the increased subcutaneous pressure introduced by the tissue capsule pressure on the implanted shunt valve system, optimum design parameters were proposed for the ASD.

  • PDF

Characteristics analysis of direct-operated poppet valve (직동형 포펫 밸브의 특성 해석)

  • 최영호;윤소남;함영복;조정대
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.729-732
    • /
    • 2002
  • In this paper, poppet valve with cone type poppet and sharp edged seat was studied. In order to develope poppet valve which have a specification of 315(bar) and 3(lpm), effect of design parameter as valve seat diameter, poppet angle, spring stiffness and spring pre-load was evaluated. The validity of simulation was confirmed and basic data far poppet valve design was derived.

  • PDF

Analysis of Dynamic Characteristics and Performance of Solenoid Valve for Pressurization Propellant Tank (추진제탱크 가압용 솔레노이드밸브의 작동특성 분석 및 해석)

  • Jang, Jesun;Kim, Byunghun;Han, Sangyeop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.128-134
    • /
    • 2013
  • A 2-way solenoid valve regulates to maintain the pressure of ullage volume of propellant tanks when the command is given by control system for the liquid-propellant feeding system of space launch vehicle. The simulation model of solenoid valve for pressurization is designed with AMESim to verify the designs and evaluate the dynamic characteristics and pneumatic behaviors of valve. To improve the accuracy of the model, numerical flow analysis by using FLUNET code. The simulation results of their operating durations of valve by AMESim analysis are matched up with the results of experiments and validate valve model. Using the model, we analyze performance of valve; opening/closing pressure, operating time on various design factors of basic valve and control valve; geometrical size of valve seat, ratio of basic valve and sealing area.

A study on the pressure controller design of multiple control valve structure (다중 제어밸브 구조의 압력제어기 설계에 관한 연구)

  • Shin, Suk-Shin;Park, Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.404-408
    • /
    • 2013
  • In this Study, another way to accomplish the goal of meeting large steam-flow requirements is the use of multiple valves. Multiple valves can provide better control in meeting the precision pressure controller requirements. Simulation demonstrates the effectiveness of the pressure controller. The key point of this study is to precisely control the position of the control valve on the outside of the electro-hydraulic system using a special PID controller. Simulation and experiments verify the performance of the controller.

An Optimal Design of a two stage relief valve by Genetic Algorithm

  • Kim, seungwoo;doowan Im;Kyungkwan Ahn;Soonyong Yang;Lee, Byungryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.66.2-66
    • /
    • 2002
  • In this study, a novel systematic design procedure by Genetic Algorithm of a two stage relief valve is proposed. First of all, a mathematical model describing the dynamics of a balanced piston type relief valve has been derived. Governing equations such as dynamic equations for the main spool and the pilot spool and flow equations for each orifice are established. The mathematical model is verified by comparing the results of simulation with that of experiments. Furthermore, influences of the parameters on the dynamic characteristics of a relief valve have been investigated by simulation of the proposed model. Major design parameters on the valve response are determin...

  • PDF

Prediction of Flow coefficient according to accuracy of opening Bellows Seal Valve (벨로우즈 실 밸브의 개폐정도에 따른 유량계수의 예측)

  • Song, Xueguan;Kang, Jung-Ho;Kim, Seung-Gyu;Park, Young-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.3-7
    • /
    • 2007
  • The valve is used on control of flow in a ship. Flow coefficient of valve is very importance in the design of valve. In this paper, three-dimensional computer simulations by commercial code CFX were conducted to observe the valve type and to measure flow coefficient when valves with various angles and uniform incoming velocity were used in a piping system. By contrast, a group of experimental data is used to compare with the data obtained by CFX simulation to investigate the validity of numerical method.

  • PDF

A Study on Dynamic Characteristics Improvement of Fast Response Proportional Flow Control Valve (고응답 비래 유량제어 밸브의 동특성 향상에 관한 연구)

  • 김고도;김원수;이현철;윤소남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1053-1057
    • /
    • 1996
  • The purpose of this study is to bring out the optimal design factors which effect on dynamic characteristics in the design of proportional flow control valve with fast response characteristics, and to verify the validity of the design factors In this study, force feedback type flow control valve with nozzle-flapper is studied. And, the influences which fixed orifice, nozzle diameter, and maximum displacement between nozzle and flapper effect on dynamic characteristics are analyzed. We have done simulations using the optimal design factors and simulink(Matlab) as a simulation tool, and verified the validity of our simulations by means of comparison our simulation results with an experimental results of another similar valve.

  • PDF

Simulation of Vacuum Characteristics by Applications of Vacuum Valves in Display Processing (디스플레이공정 진공시스템 밸브응용에 따른 진공특성 전산모사)

  • Kim, Hyung-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.77-83
    • /
    • 2012
  • Effect of valve conductance on performance of vacuum system was simulated for optimum design of vacuum system. In this investigation, the feasibility of modeling mechanism for VacSimMulti simulator was proposed. Application specific design of vacuum system is required to meet the particular process conditions for various industrial implementations of vacuum equipments. Geometry and length, diameter of vacuum valve were modeled as simulation modeling variables for conductance effects. Series vacuum system was modeled and simulated with varied dimensions and structures of exhaust valves. Variation of valve diameter showed the more significant effects on vacuum characteristics than that of pipeline length variations. It was also observed that the aperture structure of valve had the superior vacuum characteristics among the modeled systems.