• Title/Summary/Keyword: Valve mode

Search Result 217, Processing Time 0.029 seconds

Quantitative Doppler echocardiography during Dobutamine stress test in canine mitral regurgitant model

  • Choi, Hojung;Won, Sungjun;Lee, Kichang;Choi, Mincheol;Yoon, Junghee
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.2
    • /
    • pp.317-322
    • /
    • 2004
  • This study was performed to evaluate echocardiographic parameters in dogs with experimental mitral regurgitation subjected to dobutamine stress testing. In 8 beagle dogs, a 4-prong grasping forceps was inserted into the left ventricle through the carotid artery with fluoroscopic guidance. The disruption of chordae or mitral valve leaflet was performed. Echocardiographic protocols included quantitative Doppler echocardiography and M-mode measurement for evaluating left ventricle function. After all measurement was obtained at rest, dobutamine was infused incrementally. In stress testing, all measurement also was performed at rest as the same method. In stress Doppler echocardiography, regurgitant fraction and aortic stroke volume was increased significantly (P<0.001). Effective regurgitant orifice and regurgitant volume was not changed. In M-mode examination, fractional shortening was increased significantly at stress test (P<0.001). From the results obtained in this study, it could be suggested that dobutamine stress echocardiography increase left ventricle performance in non-functional mitral regurgitation and quantitative Doppler echocardiography is non-invasive, accurate method in valvular regurgitation.

Characteristics of Durability and Emission with Biodiesel Fuel (5%) in a Common Rail Direct Injection Diesel Engine at SEOUL-10 Mode (SEOUL-10 모드에서 바이오디젤유 (5%) 적용시 커먼레일 디젤기관의 배기배출물 및 내구 특성)

  • Choi, S.H.;Oh, Y.I.;Kim, G.H.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.2 s.121
    • /
    • pp.97-101
    • /
    • 2007
  • A CRDI diesel engine used to commercial vehicle was fueled with diesel fuel and 5% biodiesel blended fuel (BDF 5%) and tested at the Seoul-10 mode for 150 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. To check the engine parts (valve, injector), the engine was inspected after 150 hours running test. It was concluded that there was no unusual deterioration of the engine, or the changes in engine power (below 2.6%), smoke (below 6.2%), NOx (below 2%) and durability characteristics in spite of operation of 150 hours run with BDF 5%. The difference of kinetic viscosity for engine oil (before and after durability testing) was below 0.36%

On-line Insulation Diagnostic by PD Monitoring Field Practical of UHF Technique for On-line PD Monitoring (UHF 기술을 이용한 온라인 부분방전 모니터링)

  • Oh, Yong;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.176-180
    • /
    • 2008
  • A field-oriented UHF system for on-line PD monitoring of transformers is designed, which has been installed inside the oil tank of transformer in a substation by two ways: on-line installing mode through the oil-valve and pre-installing mode through the man hole/hand hole cover. This system has successfully captured long intermittent discharge signals that hadn't been detected through conventional techniques, and solved the problem successfully. The results demonstrate that UHF technique has great advantages for on-line PD monitoring of transformers. By adopting the peak detection technique, it becomes easy and effective for the transplantation of the phase-resolved pattern recognition technique from conventional method to UHF method, and then to realize continuous on-line monitoring, source characterization and trending analysis.

Development of Control Algorithm and Real Time Numerical Simulation Program for Adaptive Cruise Control Vehicles (적응순향 제어(ACC) 차량의 제어 알고리즘 및 실시간 수치실험 프로그램 개발)

  • 원문철;강연준;강병배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.202-213
    • /
    • 1999
  • Adaptive Cruise Control (ACC) is one of key features on intelligent Transportation System(ITS). In ACC, the steering is done by a driver, but the engine throttle valve and the brake are controlled electronically. The relative velocity and distance from the preceeding vehicle are measured by radars or image processing units and relevant vehicular spacing is maintained in ACC control systems. In this study, vehicle longitudinal dynamics are modeled to simulate vehicle longitudinal maneuver and to design longtitudinal controllers for ACC vehicles. The control algorithm is designed based on the modeled vehicle longitudinal dynamics using a non-linear sliding mode control method. To verity the performance of the control algorithm, a real time numerical simulation program is developed on a Silicon Graphics workstation using C-language . A real time graphic program is alos develpe and integrated with the numerical simulation program.

  • PDF

Effects of GMA Welding Conditions on the Bead Shape of Hardfacing Overlay Welding (하드페이싱 오버레이용접 비드형상에 미치는 GMA 용접조건의 영향)

  • Han, Kyu-Ho;Kim, Jun-Ki;Kim, Cheol-Hee;Kim, Jeong-Han;Nam, See-Hwan;Jeon, Chi-Jung
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.58-63
    • /
    • 2007
  • The relationship between GMA welding conditions and the bead shape of overlay weld was studied by using ${\Phi}1.6mm$ hypo-eutectic metal-cored wire designed for hardfacing against the severe metal-to-metal wear. As the welding voltage increased, the dilution also increased but the sudden drop of dilution was observed at $30{\sim}33V$. It was considered to be due to the decrease of penetration resulting from the change of transfer mode, from short circuit to spray. It was also found that the behavior of penetration with welding current was dependant on the transfer mode. The short circuit mode exerted the penetration to decrease while the spray mode did it to increase with increase of welding current. The former was considered to be responsible for the remarkable decrease in dilution at low welding voltage region. The change of transfer mode also had an effect on the behavior of bead width with welding current but it did not on the bead spreadability defined as W/H ratio. It was considered that the optimal welding conditions for multi-pass overlay welding could be obtained from the bead spreadability suitable for bead lapping and the dilution as low as possible in the spray transfer mode.

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF

Adaptive Discrete Time Sliding-Mode Tracking Control of a Proportional Control Valve-Hydraulic System in the presence of friction (비선형 마찰특성을 고려한 비례제어밸브·유압실린더계의 적응 이산시간 슬라이딩모드 추적제어)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.756-762
    • /
    • 2009
  • As nonlinear friction, stick-slip friction in hydraulic actuators are a problem for accuracy and repeatability. Therefore friction compensation has been approached through various control algorithms. A Adaptive discrete time sliding mode tracking controller has been applied in order to compensate the nonlinear friction characteristics in a hydraulic Actuator. Based on the diophantine equation, a new discrete time sliding function is defined and utilized for the control law which includes a friction and modeling error. Robustness is increased by using both a projection algorithm and a sliding function-based nonlinear feedforward. From the results of simulation and experiment good tracking performance is achieved.

  • PDF

Electronic-hydraulic Hitch Control System for Agricultural Tractor -Draft Control- (트랙터의 전자유압식(電子油壓式) 히치 제어(制御) 시스템에 관한 연구(硏究)(II) -견인력제어(牽引力制御)-)

  • Yoo, S.N.;Ryu, K.H.;Yun, Y.D.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.229-241
    • /
    • 1989
  • The purposes of this study were to develop an electronic-hydraulic draft control system for tractor implements, to investigate the control performance of the system and the possibility of adaptation to the conventional tractor. Experiments were carried out to investigate the responses of the system to the step and sinusoidal inputs in draft control. The effects of control mode, hydraulic flow rate, reference deadband, and proportional constant on control performance of the system were investigated. Moreover, the effects of filtering signals from draft sensor were also investigated. The following conclusions were derived from the study; 1. In draft control, there were hunting problems in controlling the implement without filtering the draft signals. Filtering was performed by a control program of electronic controller and the control performance and stability of the system were improved significantly. 2. For the draft control system operated on on-off control mode, draft was controlled within ${\pm}27-{\pm}55kg_f$ to the reference draft when the hydraulic flow rates were 5-15 l/min. For the draft control system operated on PWM control, draft was controlled within ${\pm}27kg_f$ to the reference draft regardless of hydraulic flow rates. 3. In the frequency responses of the draft control system, control performance on PWM control mode was not better than on on-off control mode because of characteristics of hydraulic valve and drafe sensor. As the hydraulic flow rates increased for the system operated on on-off control mode, the corner frequency of amplitude attenuation increased, but the corner frequency of phase-angle change remained nearly the same. But, the system was unstable beyond the frequency of 3.1 rad/s. 4. The electronic-hydraulic hitch control system developed in this study showed superior control performance, stability and convenience compared to conventional mechanical-hydraulic hitch control system. It is considered to be a superior replacement for the conventional mechanical-hydraulic hitch control system.

  • PDF

A Study on Energy Saving of IMV Circuit using Pressure Feedback

  • Park, Hyoung Gyu;Nahian, Syed Abu;Anh, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.31-44
    • /
    • 2016
  • In recent hydraulic actuation systems, conventional hydraulic spool valves with pressure compensators are becoming less popular, after the introduction of the independent metering concept for valves. Within this concept, four valves are needed for actuating a single cylinder. Subsequently, this increases the freedom of controlling both chamber pressures of the cylinder, and it then provides for electronically-controlled pressure compensation facilities. Additionally, this has the potential to save valuable energy. The primary focus of this paper is to develop a new generation of hydraulic circuits using the independent metering valve (IMV). This configuration can function well as a conventional IMV circuit while providing better pressure control. We first describe the working principles of five distinct modes of the proposed IMV system. Then, mathematical models for each working mode are presented. Finally, we present numerical simulations that have been carried out to evaluate the system performance, in comparison with that of the conventional IMV configuration. The simulation results demonstrate that the performance of the new IMV configuration is superior to the conventional IMV system in terms of energy savings.

Development of a Control Method of Traction Control System Using Vehicle Model (차량 모델을 이용한 구동력 제어 시스템 (TCS)의 제어 방법 개발)

  • Song Jeonghoon;Kim Heungseob;Lee Dae Hee;Son Minhyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1203-1211
    • /
    • 2004
  • A traction control systems (TCSs) composed of either a wheel slip controller or a throttle valve controller or an integrated controller of both systems are proposed in this study. To validatethe dynamic characteristics of a vehicle and TCS, a full car model that can simulate the responses of both front wheel drive (2WD) and four wheel drive (4WD) vehicle is also developed. The wheel slip controller uses a sliding mode control scheme and the throttle valve is controlled by a PID controller. The results shows that tHe brake TCS and the engine TCS achieve rapid acceleration, and reduce slip angle on slippery road. When a vehicle is cornering and accelerating maneuver with the brake or engine TCS, understeer or oversteer occur, depending on the driving conditions. The integrated TCS prevents most of these problems and improves the stability and controllability of the vehicle.