• 제목/요약/키워드: Valve flow noise

검색결과 104건 처리시간 0.028초

기액 이상류를 전파하는 약한 충격파에 관한 이론해석적 연구 (A Theoretical Analysis of the Weak Shock Waves Propagating through a Bubbly Flow)

  • 전구식;백승철;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1617-1622
    • /
    • 2004
  • Two-phase flow of liquid and gas through pipe lines are frequently encountered in nuclear power plant or industrial facility. Pressure waves which can be generated by a valve operation or any other cause in pipe lines propagate through the two-phase flow, often leading to severe noise and vibration problems or fatigue failure of pipe line system. It is of practical importance to predict the propagation characteristics of the pressure waves for the safety design for the pipe line. In the present study, a theoretical analysis is performed to understand the propagation characteristics of a weak shock wave in a bubbly flow. A wave equation is developed using a small perturbation method to analyze the weak shock wave through a bubbly flow with comparably low void fractions. It is known that the elasticity of pipe and void fraction significantly affect the propagation speed of shock wave, but the frequency of relaxation oscillation which is generated behind the shock wave is not strongly influenced by the elasticity of pipe. The present analytical results are in close agreement with existing experimental data.

  • PDF

흡.배기 시스템의 맥동류가 과급디젤기관의 체적효율에 미치는 영향 (The Effects of Pulsating Flow on Volumetric Efficiency in the Intake and Exhaust System in a Turbocharged Diesel Engine)

  • 김경현;강희영;고대권
    • 동력기계공학회지
    • /
    • 제13권4호
    • /
    • pp.11-17
    • /
    • 2009
  • This paper deals with the effects of pulsating flow on volumetric efficiency, which may be generated during the gas exchange procedure, due to piston motion, valve event on intake and exhaust stroke and unsteady flow of turbocharger of a three-cylinder four stroke turbo-charged diesel engine. Consequently, volumetric efficiency affects significantly the engine performance; torque characteristics, fuel economy and further to emission and noise level. As the expansion ratio became larger the engine speed varies and torque increases, the pressure pulsation in an exhaust gas pipe acts as an increasing factor of intake air charging capacity totally. The phase and amplitude of pressure pulsation in the intake system only affects volumetric efficiency favorably, if it is well matched and tuned effectively to the engine. Thus, to verify the exact phase and amplitude of the pressure variation is the ultimate solution for the air-flow ratio assessment in the intake stroke. Some experimental results of pressure diagrams in the intake pipe and gas-flow of turbine in-outlet are presented, under various kinds of operating condition.

  • PDF

재해대비 농업용저수지 취수시설로서 사이폰의 현장적용성에 관한 실험적 연구 (Experiment Study on Field Applicability of Siphon as a Intake Facility of Agricultural Reservoir for Disaster Prevention)

  • 양영진;이태호;오수훈
    • 한국농공학회논문집
    • /
    • 제60권2호
    • /
    • pp.103-110
    • /
    • 2018
  • Most of the intake facilities of small agricultural reservoirs are conduits and they are regarded as serious defects due to the structural weakness that penetrates the body of the dam, and countermeasures are needed. This study suggests the application method of siphon type water intake facility by hydraulic model test and physical scale model test of siphon type water intake facility which has high safety and easy maintenance. Experimental results show that sufficient flow rate can be secured for the purpose of intaking water according to the differential head between the reservoir and the discharge part, and the flow rate can be controlled by the valve. The negative pressure was -31.5 kPa, and vibration and noise did not occur during the operation of the siphon. The maximum flow velocity in the discharge outlet was 1.11 m/s which meets the criterion for irrigation canals. Therefore, scour risk would be very low. As a result of the inflow distribution experiment, even if the inflow part is separated by only about 0.8 m, the flow velocity is remarkably decreased, so that the clogging by debris would not appear. When the pump was operated only once for the first time and the inside of the siphon was filled with water, continuous operation was possible by only valve operation. The results of this study are expected to be used for the design guidelines of the water intake facilities and improve safety and maintenance convenience of agricultural reservoirs.

압전 작동기를 이용한 새로운 디스펜싱 시스템 설계 (Design of a New Dispensing System Featuring Piezoelectric Actuator)

  • 구오흥;최민규;윤보영;최승복
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.739-745
    • /
    • 2006
  • This paper presents a novel type of hybrid dispensing head for IC fabrication and surface mount technology. The proposed mechanism consists of solenoid valve and piezoelectric stack as actuators, and provides positive-displacement and jet dispensing. The positive-displacement dispensing can produce desired adhesive amount without viscosity effect, while the jet dispensing can produce high precision adhesive amount. In order to determine the relationship between required voltage of the piezoelectric actuator and needle displacement, both static and dynamic analysis are undertaken, In addition, finite element analysis is performed in order to find optimal design parameters. Dispensing flow rate and pressure in the chamber are evaluated through fluid dynamic model.

발전소 가열기 급수용 배관계 이상 진동 고찰 (Investigation on Transient Vibration of Piping System to Heater in a Power Plant)

  • 양경현;조철환;배춘희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.975-978
    • /
    • 2004
  • There was transient vibration on the piping system from #4 heater to the deaerator in a power plant. We found it was resulted from resonance between the natural vibration of the piping system and vibration induced by flow of feedwater. We verified it would reduce vibration by increasing stiffness of the piping system. Therefore we concluded that it would be generally better to increase stiffness of the piping system to reduce vibration amplitude of 10Hz low for big sized piping systems.

  • PDF

압전 작동기를 이용한 새로운 디스펜싱 시스템 설계 (Design of a New Dispensing System Featuring Piezoelectric Actuator)

  • 구오흥;최민규;윤보영;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.821-826
    • /
    • 2006
  • This paper presents a novel type of hybrid dispensing head for IC fabrication and surface mount technology. The proposed mechanism consists of solenoid valve and piezoelectric stack as actuators, and provides positive-displacement and jet dispensing. The positive-displacement dispensing can produce desired adhesive amount without viscosity effect, while the jet dispensing can produce high precision adhesive amount. In order to determine the relationship between required voltage of the piezo actuator and needle displacement, both static and dynamic analysis are undertaken, In addition, finite element analysis is performed in order to find optimal design parameters. Dispensing flow rate and pressure in the chamber are evaluated through fluid dynamic model.

  • PDF

주증기 배관 헤더의 압력맥동에 대한 분기 배관의 고진동 대책 (Countermeasure on High Vibration of Branch Pipe with Pressure Pulsation Transmitted from Main Steam Header)

  • 김연환;배용채;이영신
    • 한국소음진동공학회논문집
    • /
    • 제15권8호
    • /
    • pp.988-995
    • /
    • 2005
  • Vibration has been severly increased at the branch pipe of main steam header since the commercial operation of nuclear power plant. Intense broad band disturbance flow at the discontinuous region such as elbow, valve, and header generates the acoustical pulsation which is propagated through the piping system. The pulsation becomes the source of low frequency vibration at piping system. If it coincide with natural frequency of the pipe system, excessive vibration is made. High level vibration due to the pressure pulsation related to high dynamic stress, and ultimately, to failure probability affects fatally the reliability and confidence of plant piping system. This paper discusses vibration effect for the branch pipe system due to acoustical pulsations by broad band disturbance flow at the large main steam header in 700 MW nuclear power plant. The exciting sources and response of the piping system are investigated by using on-site measurements and analytical approaches. It is identified that excessive vibration is caused by acoustical pulsations of 1.3 Hz, 4.4 Hz and 6.6 Hz transmitted from main steam balance header, which are coincided with fundamental natural frequencies of the piping structure. The energy absorbing restraints with additional stiffness and damping factor were installed to reduce excessive vibration.

주증기 배관 헤더의 맥동이 분기 배관에 미치는 영향 (Vibration Effect for Branch Pipe System due to Main Steam Header Pulsation)

  • 김연환;배용채;이현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.780-785
    • /
    • 2005
  • Vibration has been severly increased at the branch pipe of main steam header since the commercial operation of a nuclear power plant. Intense broad band disturbance flow at the discontinuous region such as elbow, valve or heather generates the acoustical pulsation which is propagated through the piping system. The pulsation becomes the source of low frequency vibration at piping system. If it coincide with natural frequency of the pipe system, excessive vibration is made. High level vibration due to the pressure pulsation related to high dynamic stress, and ultimately, to failure probability affects fatally the reliability and confidence of plant piping system. This paper discusses vibration effect for the branch pipe system due to acoustical pulsations by broad band disturbance flow at the large main steam header in 7nn nuclear power plant. The exciting sources and response or the piping system are investigated by using on site measurements and analytical approaches. It is identified that excessive vibration is caused by acoustical pulsations of 1.3Hz, 4.4Hz and 6.6Hz transferred from main steam header, which are coincided with fundamental natural frequencies of the piping structure. The energy absorbing restraints with additional stiffness were installed to reduce excessive vibration.

  • PDF

반능동형 머플러 내부의 유동장특성에 관한 연구 (A study on the inner flow fields characteristics of the Semi-active muffler)

  • 박경석;허형석;박세종;손성만;김동현
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.125-131
    • /
    • 2006
  • Recently air pollution has become an important issue. So, as tile number of vehicles increases, the noise pollution has become one of the most serious social issues nowadays. It is a muffler, which is one of the vehicle components. that has the hugest impact on the noise from the vehicle. And it also has a direct influence on the engine performance. So lately the research is proceeding on tile semi-active muffler which can control the back pressure variably by setting up the exhaust variable valve in the baffle to improve its internal structure. The inner parts of muffler which consist of a baffle, pipes and etc. appear to have the complicated turbulence phenomena by the pulsational wave of an unsteady state in the engine and by the structural characteristics of the inner parts. To analyze these phenomena, it is required to have an analysis of its constant quantity and quality. Therefore this study is to analyze with PIV measurement which can analyze the time and space variables, not with the point measurement method like former multi-point anemometer. It is to suggest proper design variables which need to make internal structure of the muffler improve though comparison between the passive type muffler and the semi-active muffler by fabricating a muffler which can be visualized.

250마력 급 차량용 터보차저 서지현상에 대한 실험적 연구 (Experimental Study of Compressor Surge for 250-hp Class Vehicular Turbocharger)

  • 이형창;한재영;이명희;임석연;유상석
    • 대한기계학회논문집B
    • /
    • 제39권1호
    • /
    • pp.89-95
    • /
    • 2015
  • 터보압축기의 서지는 압축기의 불안정 운전영역으로 주로 소음과 맥동을 유발하며 수회 지속될시 압축기 시스템 전반에 걸쳐 막대한 피해를 입힌다. 압축기의 안전한 운전을 위해서는 서지현상에 대한 특성파악과 제어전략 수립이 중요하다. 서지현상의 제어는 주로 압축가스의 통과유동량 증대, 필요한 헤드 저감, 압축기 회전수 감속, 가스의 바이패스를 통하여 이루어진다. 본 연구에서는 차량용 터보차저에 서지를 유발했을 때 각 운전 구간별 발생되는 압력변동 특성을 연구하고자 한다. 서지 특성 확인을 위한 파라미터는 압축기 입구 유량과 출구 유량, 관경, 회전수 등으로 선정하였다. 입구단과 출구단 유량을 조절하여 서지 압력 변동을 조사한 결과, 출구단 보다는 입구단 유량의 급격한 변화가 서지와 압축기 내구에 더 영향이 크다는 것을 확인하였다.