• Title/Summary/Keyword: Value engineering methodology

Search Result 532, Processing Time 0.025 seconds

Using Taguchi design of experiments for the optimization of electrospun thermoplastic polyurethane scaffolds

  • Nezadi, Maryam;Keshvari, Hamid;Yousefzadeh, Maryam
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.59-69
    • /
    • 2021
  • Electrospinning is a cost-effective and versatile method for producing submicron fibers. Although this method is relatively simple, at the theoretical level the interactions between process parameters and their influence on the fiber morphology are not yet fully understood. In this paper, the aim was finding optimal electrospinning parameters in order to obtain the smallest fiber diameter by using Taguchi's methodology. The nanofibers produced by electrospinning a solution of Thermoplastic Polyurethane (TPU) in Dimethylformamide (DMF). Polymer concentration and process parameters were considered as the effective factors. Taguchi's L9 orthogonal design (4 parameters, 3 levels) was applied to the experiential design. Optimal electrospinning conditions were determined using the signal-to-noise (S/N) ratio with Minitab 17 software. The morphology of the nanofibers was studied by a Scanning Electron Microscope (SEM). Thereafter, a tensile tester machine was used to assess mechanical properties of nanofibrous scaffolds. The analysis of DoE experiments showed that TPU concentration was the most significant parameter. An optimum combination to reach smallest diameters was yielded at 12 wt% polymer concentration, 16 kV of the supply voltage, 0.1 ml/h feed rate and 15 cm tip-to-distance. An empirical model was extracted and verified using confirmation test. The average diameter of nanofibers at the optimum conditions was in the range of 242.10 to 257.92 nm at a confidence level 95% which was in close agreement with the predicted value by the Taguchi technique. Also, the mechanical properties increased with decreasing fibers diameter. This study demonstrated Taguchi method was successfully applied to the optimization of electrospinning conditions for TPU nanofibers and the presented scaffold can mimic the structure of Extracellular Matrix (ECM).

A Study on Improving Shock Absorption Test of Safety Helmet (안전모의 충격 흡수성 시험 개선에 관한 연구)

  • Sang Woo Shim;Yong Su Sim;Jong Bin Lee;Seong Rok Chang
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.5
    • /
    • pp.36-42
    • /
    • 2023
  • In this study, 50 ABE-type hard hats were procured from five certified commercial manufacturers, and shock absorption tests were conducted in accordance with Protective Equipment Safety Certification Notice No. 2020-35. The tests were performed under both high- and low-temperature conditions, adhering to safety helmet testing standards. The highest shock transmission ranges were recorded in the tests, with an average energy range of 2,600-4,108 N at high temperatures and 2,316-3,991 N at low temperatures. All five hard hat models demonstrated a maximum transmitted impact force below 4,450 N, without any loss of cap and attachment functionality, confirming their compliance with performance standards. Furthermore, we evaluated the side impact performance of the safety helmets of each company, with an average range of 4,722-5,267 N. Company A exhibited the lowest measurement at 4,722 N. Comparing these results with international safety standards and the national shock absorption test criteria, it was observed that the maximum transmitted shock value using government-specified impact weight falls within the range of 4,450-5,000 N. However, it was noted that developed countries have established specific standards for the side impact forces on safety helmets, which are legally mandated. Consequently, it is imperative for South Korea to enhance its safety helmet side impact performance test methodology to align with domestic standards in the future.

Optimization of sterilization conditions for the production of retorted steamed egg using response surface methodology (반응표면분석을 이용한 레토르트 계란찜의 살균조건 최적화)

  • Cheigh, Chan-Ick;Mun, Ji-Hye;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.331-338
    • /
    • 2018
  • The purpose of this study was to determine the optimum sterilization conditions for the production of retorted steamed egg using response surface methodology. Sterilization processes for eighteen conditions using varying sterilization temperature ($X_1$), time ($X_2$), and method ($X_3$) as the independent variables were carried out through a $3^2{\times}2$ experimental factorial design. Quality evaluations after sterilization included measurements of $F_0$ value ($Y_1$), peak stress ($Y_2$), pH ($Y_3$), color value ($Y_{4-6}$), and organoleptic test [preference for appearance ($Y_7$), overall acceptability ($Y_8$), and preference for texture ($Y_9$) and egg taste ($Y_{10}$)]. Dependent variables ($Y_{1-10}$) of eighteen conditions were more affected by temperature and time than by the sterilization method. Eight factors were selected among the dependent variables as significant factors related to the quality of the steamed egg. Finally, by establishing an optimum range of each dependent variable and contour analysis, the optimum sterilization conditions for the production of steamed egg were determined to be $120^{\circ}C$ for 25 min using a 2-step sterilization process.

A Study of Smart Healthcare Services Software Quality Satisfaction Rating System based on QoS(Quality of Service) Measurement Model (QoS(Quality of Service) 측정 모델을 참조한 스마트헬스케어서비스 소프트웨어 품질만족도 평가체계)

  • Noh, Si-Choon;Song, Eun-Jee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.149-154
    • /
    • 2014
  • Quality is the value that can be measured by observing the characteristics of the service quantity or quality. QoS is predictable service traffic to a minimum requirements what passed in network. In the course of Smart Medical Information System Development there exist some functional requirements to satisfy quality objectives. The functional smart domains of healthcare information systems consists of Patient Module, a smart sensing and communication domain, RFID Tag Readers and the behavior domain, Homecare Station Domain, Clinical Station. This study is performed on evaluation methodology of u-health service satisfaction quality of each domain. In this paper QoS metrics and the quality of medical information requirements, functional requirements are separated by. Quality parameters consists of six items and the functional requirements and quality requirements 20 details the five items and consist of 20 detailed items. On this study the quality evaluation methodology of Korean smart health information quality assessment matrix 2 - factor evaluation method is proposed. The overall framework of this paper is organizing the specific criteria of quality of medical information system and modeling quality evaluation process under all smart environment.

Lifting Work Process Optimization Method in High-rise Building Construction Through Improvement of CYCLONE Modeling Method (CYCLONE 모델링 기법 개선을 통한 초고층 공사의 자재 양중 작업 프로세스 최적화 연구)

  • Hawng, Doowon;Kwon, Okyung;Choi, Yoonki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.58-70
    • /
    • 2017
  • The planning for material lifting operations is one of the key processes in high-rise building construction. Several previous studies have used rough calculations by referring to existing practices or establishing a target value for lifting cycle time or operating rate. Therefore, the purpose of this study is to propose a material lifting process optimization method for reducing the lifting cycle time and increasing the operating rate. In this study, we improve the cyclic operation network (CYCLONE) modeling method that considers the duration and zone information of each work task. This method can be used to hand over work tasks to another crew group in the work process. According to this methodology, this study optimizes the material lifting process, performs a sensitivity analysis, and evaluates the field applicability of the proposed material lifting process optimization method. Therefore, the optimized process was then applied to a high-rise building construction site. The lifting work process time and operating rate for the simulated as - is lifting process data, optimized process data, and field application result data were compared for each lifting height. From this comparison, the effectiveness of the optimization methodology was confirmed.

Methodology of Shape Design for Component Using Optimal Design System (최적설계 시스템을 이용한 부품에 대한 형상설계 방법론)

  • Lee, Joon-Seong;Cho, Seong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.672-679
    • /
    • 2018
  • This paper describes a methodology for shape design using an optimal design system, whereas generally a three dimensional analysis is required for such designs. An automatic finite element mesh generation technique, which is based on fuzzy knowledge processing and computational geometry techniques, is incorporated into the system, together with a commercial FE analysis code and a commercial solid modeler. Also, with the aid of multilayer neural networks, the present system allows us to automatically obtain a design window, in which a number of satisfactory design solutions exist in a multi-dimensional design parameter space. The developed optimal design system is successfully applied to evaluate the structures that are used. This study used a stress gauge to measure the maximum stress affecting the parts of the side housing bracket which are most vulnerable to cracking. Thereafter, we used a tool to interpret the maximum stress value, while maintaining the same stress as that exerted on the spot. Furthermore, a stress analysis was performed with the typical shape maintained intact, SM490 used for the material and the minimizing weight safety coefficient set to 3, while keeping the maximum stress the same as or smaller than the allowable stress. In this paper, a side housing bracket with a comparably simple structure for 36 tons was optimized, however if the method developed in this study were applied to side housing brackets of different classes (tons), their quality would be greatly improved.

A Study on Variable Speed Limit Strategies in Freeway Work Zone Using Multi-Criteria Decision Making Process (다기준 의사결정기반 고속도로 공사구간 VSL전략에 관한 연구)

  • Park, Juneyoung;Oh, Cheol;Chang, Myungsoon
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.5
    • /
    • pp.3-15
    • /
    • 2013
  • The purpose of this study is to propose a methodology for operating variable speed limit (VSL) strategies in freeway work zones. A notable feature in this study is to incorporate a multi-criteria decision making process into deriving better VSL strategies. Decision criteria in this study include operational efficiency, safety, and environmental impacts. Travel speed, acceleration noise, and CO2 were used as performance measures for evaluating VSL strategies. A multi-criteria value function was developed through an analytical hierarchical process (AHP) for representing expert's knowledge. Then, a variety of VSL operations scenarios were investigated utilizing a microscopic traffic simulation suite, VISSIM. The proposed methodology would be useful in supporting more efficient, safer, and more environment-friendly traffic operations and control in freeway work zones.

Wavelet-based Statistical Noise Detection and Emotion Classification Method for Improving Multimodal Emotion Recognition (멀티모달 감정인식률 향상을 위한 웨이블릿 기반의 통계적 잡음 검출 및 감정분류 방법 연구)

  • Yoon, Jun-Han;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1140-1146
    • /
    • 2018
  • Recently, a methodology for analyzing complex bio-signals using a deep learning model has emerged among studies that recognize human emotions. At this time, the accuracy of emotion classification may be changed depending on the evaluation method and reliability depending on the kind of data to be learned. In the case of biological signals, the reliability of data is determined according to the noise ratio, so that the noise detection method is as important as that. Also, according to the methodology for defining emotions, appropriate emotional evaluation methods will be needed. In this paper, we propose a wavelet -based noise threshold setting algorithm for verifying the reliability of data for multimodal bio-signal data labeled Valence and Arousal and a method for improving the emotion recognition rate by weighting the evaluation data. After extracting the wavelet component of the signal using the wavelet transform, the distortion and kurtosis of the component are obtained, the noise is detected at the threshold calculated by the hampel identifier, and the training data is selected considering the noise ratio of the original signal. In addition, weighting is applied to the overall evaluation of the emotion recognition rate using the euclidean distance from the median value of the Valence-Arousal plane when classifying emotional data. To verify the proposed algorithm, we use ASCERTAIN data set to observe the degree of emotion recognition rate improvement.

Towards high-accuracy data modelling, uncertainty quantification and correlation analysis for SHM measurements during typhoon events using an improved most likely heteroscedastic Gaussian process

  • Qi-Ang Wang;Hao-Bo Wang;Zhan-Guo Ma;Yi-Qing Ni;Zhi-Jun Liu;Jian Jiang;Rui Sun;Hao-Wei Zhu
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.267-279
    • /
    • 2023
  • Data modelling and interpretation for structural health monitoring (SHM) field data are critical for evaluating structural performance and quantifying the vulnerability of infrastructure systems. In order to improve the data modelling accuracy, and extend the application range from data regression analysis to out-of-sample forecasting analysis, an improved most likely heteroscedastic Gaussian process (iMLHGP) methodology is proposed in this study by the incorporation of the outof-sample forecasting algorithm. The proposed iMLHGP method overcomes this limitation of constant variance of Gaussian process (GP), and can be used for estimating non-stationary typhoon-induced response statistics with high volatility. The first attempt at performing data regression and forecasting analysis on structural responses using the proposed iMLHGP method has been presented by applying it to real-world filed SHM data from an instrumented cable-stay bridge during typhoon events. Uncertainty quantification and correlation analysis were also carried out to investigate the influence of typhoons on bridge strain data. Results show that the iMLHGP method has high accuracy in both regression and out-of-sample forecasting. The iMLHGP framework takes both data heteroscedasticity and accurate analytical processing of noise variance (replace with a point estimation on the most likely value) into account to avoid the intensive computational effort. According to uncertainty quantification and correlation analysis results, the uncertainties of strain measurements are affected by both traffic and wind speed. The overall change of bridge strain is affected by temperature, and the local fluctuation is greatly affected by wind speed in typhoon conditions.

Calculation Model for Function & Cost Score based on Normalization Method in Design VE (정규화 기법 기반의 설계VE 기능 및 비용 점수 산출 모델)

  • Lee, Jongsik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.4
    • /
    • pp.98-106
    • /
    • 2015
  • VE aims at reduction in a budget, improvement of function, structural safety and quality security for public construction projects. However, there is possibility for the structural safety and quality security review to be insufficient because related regulations are mostly composed of analysis on economic efficiency of design. In addition, due to the misconception about VE as a cost saving methodology, an alternative is being presented which still focuses mainly on cost saving, but with no objective evaluation of function related to cost. In order to improve this, the government adopted the reduction of life cycle cost and proposal of value improvement, and let people specify the cost and function of the original plan versus the alternative plan, and the value changes between them. However, it is written mainly into practical convenience rather than theoretical basis since a specific way is not suggested. The current method sets a different starting point by applying the attributional difference of function and cost. Furthermore, an evaluation standard for correlating is an important element in rational decision making for assessing and choosing an alternative. This paper analyzes the process and method of function & cost scoring when performing VE and suggests a mathematical normalization model in order to support rational decision making when selecting an optimum plan.