• 제목/요약/키워드: Validation Rate

검색결과 724건 처리시간 0.022초

코로나 방전기가 없는 전기집진기의 나노입자 집진에 관한 수치해석 (NUMERICAL INVESTIGATION ON CAPTURE OF NANOPARTICLES IN ELECTROSTATIC PRECIPITATOR WITHOUT CORONA DISCHARGER)

  • 이진운;장재성;이성혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.103-108
    • /
    • 2010
  • This article presents computational fluid dynamics (CFD) simulations of nanoparticle movements and flow characteristics in laboratory-scale electrostatic precipitator (ESP) without corona discharge, and for simulation, it uses the commercial CFD program(CFD-ACE) including electrostatic theory and Lagrangian-based equation for nanoparticle movement. For validation of CFD results, a simple cylindrical type of ESP is simulated and numerical prediction shows fairly good agreement with the analytical solution. In particular, the present study investigates the effect of particle diameter, inlet flow rate, and applied electric potential on particle collection efficiency and compares the numerical prediction with the experimental data, showing good agreement. It is found that the particle collection efficiency decreases with increasing inlet flow rate because the particle detention time becomes shorter, whereas it decreases with the increase in nanoparticle diameter and with the decrease of applied electric voltage resulting from smaller terminal electrostatic velocity.

  • PDF

난류박리 및 재부착 유동의 해석을 위한 저레이놀즈수 4-방정식 난류모형의 개발 (A Low-Reynolds-Number 4-Equation Model for Turbulent Separated and Reattaching Flows)

  • 이광훈;성형진
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.2039-2050
    • /
    • 1995
  • The nonlinear low-Reynolds-number k..epsilon. model of park and Sung is extended to predict the turbulent heat transports in separated and reattaching flows. The equations of the temperature variance( $k_{\theta}$ and its dissipation rate(.epsilon.$_{\theta}$ are solved, in concert with the equations of the turbulent kinetic energy(k) and its dissiation rate(.epsilon). In the present model, the near-wall effect and the non-equilibrium effect are fully taken into consideration. The validation of the model is then applied to the turbulent flow behind a backward-facing step and the flow over a blunt body. The predicted results of the present model are compared and evaluated with the relevant experiments.

국내 고층건물의 RD법에 의한 감쇠율의 진폭의존성 (Amplitude dependent damping ratio of domestic tall building by RD method)

  • 윤성원
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.89-95
    • /
    • 2004
  • The measured damping ratio was analysed to obtain amplitude dependence. Wind-induced vibration of 20 story steel-framed building was measured to investigate amplitude dependence by RD method. Micro-tremo vibrations of 20 RC bearing wall typed buildings were performed to analysis the amplitude dependence by formula proposed by Tamua and ESDU. Amplitude dependent damping in 17 story steel-framed building was showed clearly in the increasing rate of 9%. But Amplitude dependent damping of 17 RC bearing wall typed buildings was very low in the increasing rate of 2.5%. The tendency of dynamic properties of building obtained here are useful for the validation of dynamic properties of buildings in the evaluation of serviceability.

  • PDF

The Analysis on the relation between the Compression Method and the Performance of MSC(Multi-Spectral Camera) Image data

  • Yong, Sang-Soon;Choi, Myung-Jin;Ra, Sung-Woong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.530-532
    • /
    • 2007
  • Multi-Spectral Camera(MSC) is a main payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The MSC instrument has one(1) channel for panchromatic imaging and four(4) channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). The compression method on KOMPSAT-2 MSC was selected and used to match EOS input rate and PDTS output data rate on MSC image data chain. At once the MSC performance was carefully handled to minimize any degradation so that it was analyzed and restored in KGS(KOMPSAT Ground Station) during LEOP and Cal./Val.(Calibration and Validation) phase. In this paper, on-orbit image data chain in MSC and image data processing on KGS including general MSC description is briefly described. The influences on image performance between on-board compression algorithms and between performance restoration methods in ground station are analyzed and discussed.

  • PDF

연속발진 고출력 화학레이저 구동용 이젝터 시스템 연구 (Study of Ejector System for cw High Power Chemical Lasers Operating)

  • 김세훈;진정근;권세진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1715-1719
    • /
    • 2004
  • An in-house supersonic ejector was designed to ensure low pressure and high speed scavenging of resonating cavity of chemical lasers. For given primary flow condition, 100g/s secondary mass flow rate was observed at the design pressure. Performance validation of a supersonic ejector system along with an investigation of effects of supersonic diffuser was conducted. Placement of diffuser at the secondary inlet further reduced diffuser upstream pressure to 1/4-1/5 relieving the local to the primary supply unit. In order to increase the secondary flow, we put two ejectors capable of removing 50g/s each of secondary flows together to deal with higher mass flow. Test of the parallel unit demonstrated the secondary flow rate was proportional to the numbers of individual units that were brought together. Additionally, flow calculations with a commercial code were carried out in every case of experiment and compared with results.

  • PDF

Voltammetry of Constant Phase Elements: Analyzing Scan Rate Effects

  • Hyeonsu Je;Kwok-Fan Chow;Byoung-Yong Chang
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.427-435
    • /
    • 2024
  • Here we introduce a new method for characterizing the constant phase element (CPE) in electrochemical systems using cyclic voltammetry (CV), presenting an alternative to the conventional electrochemical impedance spectroscopy (EIS) approach. While CV is recognized for its diagnostic capabilities in electrochemical analysis, it traditionally encounters difficulties in accurately measuring CPE systems due to a lack of clear linearity with scan rates, unlike capacitors. Our research demonstrates a linear relationship between current and scan rate on a log-log plot, enabling the calculation of n and Y0 values for CPE from the slopes of these linear relationships. For validation of our method, it is applied to two kinds of capacitors and the results agree with those measured by EIS. Although EIS is known to be accurate in measuring CPE systems, our alternative approach offers a timely and reasonably precise diagnostic tool, balancing between ease of use and accuracy, especially beneficial for preliminary assessments before conducting further in-depth analysis.

에너지 대사량을 고려한 인력물자취급시의 생리적 안전 작업하중 모델 개발 (Development of a Model for Physiological Safe Work Load from a Model of Metabolic Energy for Manual Materials Handling Tasks)

  • 김홍기
    • 산업경영시스템학회지
    • /
    • 제27권3호
    • /
    • pp.90-96
    • /
    • 2004
  • The objective of this study was to develop a model for safe work load based on a physiological model of metabolic energy of manual material handling tasks. Fifteen male subjects voluntarily participated in this study. Lifting activities with four different weights, 0, 8, 16, 24kg, and four different working frequencies (2, 5, 8, 11 lifts/min) for a lifting range from floor to the knuckle height of 76cm were considered. Oxygen consumption rates and heart rates were measured during the performance of sixteen different lifting activities. Simplified predictive equations for estimating the oxygen consumption rate and the heart rate were developed. The oxygen consumption rate and the heart rate could be expressed as a function of task variables; frequency and the weight of the load, and a personal variable, body weight, and their interactions. The coefficients of determination ($r^2$) of the model were 0.9777 and 0.9784, respectively, for the oxygen consumption rate and the heart rate. The model of oxygen consumption rate was modified to estimate the work load for the given oxygen consumption rate. The overall absolute percent errors of the validation of this equation for work load with the original data set was 39.03%. The overall absolute percent errors were much larger than this for the two models based on the US population. The models for the oxygen consumption rate and for the work load developed in this study work better than the two models based on the US population. However, without considering the biomechanical approach, the developed model for the work load and the two US models are not recommended to estimate the work loads for low frequent lifting activities.

금속관 내부의 음압유량 향상을 위한 기하학적 디자인 및 SLIPS 윤활 (Geometrical Design and SLIPS Lubrication for Enhancement of Negative-pressure-driven Internal Flow Rate in Metal Pipes)

  • 김동근;장창환;김성재;김대겸;김산하
    • Tribology and Lubricants
    • /
    • 제37권6호
    • /
    • pp.253-260
    • /
    • 2021
  • Metal pipes are used in a wide range of applications, from plumbing systems of large construction sites to small devices such as medical tools. When a liquid is enforced to flow through a metal pipe, a higher flow rate is beneficial for higher efficiency. Using high pressures can enhance the flow rate yet can be harmful for medical applications. Thus, we consider an optimal geometrical design to increase the flow rate in medical devices. In this study, we focus on cannulas, which are widely used small metal pipes for surgical procedures, such as liposuction. We characterize the internal flow rate driven by a negative pressure and explore its dependence on the key design parameters. We quantitatively analyze the suction characteristics for each design variable by conducting computational fluid dynamics simulations. In addition, we build a suction performance measurement system which enables the translational motion of cannulas with pre-programmed velocity for experimental validation. The inner diameter, section geometry, and hole configuration are the design factors to be evaluated. The effect of the inner diameter dominates over that of section geometry and hole configuration. In addition, the circular tube shape provides the maximum flow rate among the elliptical geometries. Once the flow rate exceeds a critical value, the rate becomes independent of the number and width of the suction holes. Finally, we introduce a slippery liquid-infused nanoporous surface (SLIPS) coating using nanoparticles and hydrophobic lubricants that effectively improves the flow rate and antifouling property of cannulas without altering the geometrical design parameter.

Quality Reporting of Radiomics Analysis in Mild Cognitive Impairment and Alzheimer's Disease: A Roadmap for Moving Forward

  • So Yeon Won;Yae Won Park;Mina Park;Sung Soo Ahn;Jinna Kim;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • 제21권12호
    • /
    • pp.1345-1354
    • /
    • 2020
  • Objective: To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use. Materials and Methods: PubMed MEDLINE and EMBASE were searched using the terms 'cognitive impairment' or 'Alzheimer' or 'dementia' and 'radiomic' or 'texture' or 'radiogenomic' for articles published until March 2020. From 258 articles, 26 relevant original research articles were selected. Two neuroradiologists assessed the quality of the methodology according to the RQS. Adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science. Results: The hippocampus was the most frequently analyzed (46.2%) anatomical structure. Of the 26 studies, 16 (61.5%) used an open source database (14 from Alzheimer's Disease Neuroimaging Initiative and 2 from Open Access Series of Imaging Studies). The mean RQS was 3.6 out of 36 (9.9%), and the basic adherence rate was 27.6%. Only one study (3.8%) performed external validation. The adherence rate was relatively high for reporting the imaging protocol (96.2%), multiple segmentation (76.9%), discrimination statistics (69.2%), and open science and data (65.4%) but low for conducting test-retest analysis (7.7%) and biologic correlation (3.8%). None of the studies stated potential clinical utility, conducted a phantom study, performed cut-off analysis or calibration statistics, was a prospective study, or conducted cost-effectiveness analysis, resulting in a low level of evidence. Conclusion: The quality of radiomics reporting in MCI and AD studies is suboptimal. Validation is necessary using external dataset, and improvements need to be made to feature reproducibility, feature selection, clinical utility, model performance index, and pursuits of a higher level of evidence.

광도, CO2 농도 및 정식 후 생육시기에 따른 식물공장 재배 상추의 군락 광합성 모델 확립 (Development and Validation of a Canopy Photosynthetic Rate Model of Lettuce Using Light Intensity, CO2 Concentration, and Day after Transplanting in a Plant Factory)

  • 정대호;김태영;조영열;손정익
    • 생물환경조절학회지
    • /
    • 제27권2호
    • /
    • pp.132-139
    • /
    • 2018
  • 작물의 생산량은 광합성과 밀접한 관계가 있으며, 광합성 속도는 다양한 환경 요인에 의해 변화한다. 광합성 속도는 작물의 생육 상태나 생육 속도를 판단하는 지표로 사용되며, 작물 재배 시설을 구축하는 데 고려해야 하는 중요한 요인이다. 이 연구의 목적은 광도, $CO_2$ 농도 및 생육 단계에 의해 변화하는 로메인 상추의 군락 광합성 속도 모델을 개발하는 것이다. 군락 광합성 속도는 정식 후 5, 10, 15, 20 일차에서 5단계의 $CO_2$ 농도($600-2,200{\mu}mol{\cdot}mol^{-1}$)와 5단계의 광조건($60-340{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$)이 처리된 3개의 밀폐 아크릴 챔버($1.0{\times}0.8{\times}0.5m$) 내에서 측정하였다. 먼저 세 가지 환경 요인을 사용하는 식들을 곱하여 만든 단순곱 모델을 구성하였다. 이와 동시에 생육 시기에 따라 변화하는 광화학 이용효율과 카르복실화 컨덕턴스, 호흡에 의한 이산화탄소 발생 속도를 포함하는 수정 직각쌍곡선 모델을 구성하여 단순곱 모델과 비교하였다. 검증 결과, 단순곱 모델의 $R^2$는 0.923이었으며, 수정 직각쌍곡선 모델의 $R^2$는 0.941을 나타내었다. 따라서 수정 직각쌍곡선 모델이 광도, $CO_2$ 농도, 생육 단계의 3 변수에 따른 군락 광합성 속도를 표현하는 데 더욱 적합한 것으로 판단하였다. 본 연구에서 개발된 군락 광합성 모델은 식물공장에서 상추 재배를 위해 생육 단계별로 설정해야 할 최적의 광도와 $CO_2$ 농도를 결정하는 데 도움이 될 것으로 생각된다.