DOI QR코드

DOI QR Code

Voltammetry of Constant Phase Elements: Analyzing Scan Rate Effects

  • Hyeonsu Je (Department of Chemistry, Pukyong National University) ;
  • Kwok-Fan Chow (Department of Chemistry, University of Massachusetts Lowell) ;
  • Byoung-Yong Chang (Department of Chemistry, Pukyong National University)
  • Received : 2024.03.18
  • Accepted : 2024.04.12
  • Published : 2024.08.31

Abstract

Here we introduce a new method for characterizing the constant phase element (CPE) in electrochemical systems using cyclic voltammetry (CV), presenting an alternative to the conventional electrochemical impedance spectroscopy (EIS) approach. While CV is recognized for its diagnostic capabilities in electrochemical analysis, it traditionally encounters difficulties in accurately measuring CPE systems due to a lack of clear linearity with scan rates, unlike capacitors. Our research demonstrates a linear relationship between current and scan rate on a log-log plot, enabling the calculation of n and Y0 values for CPE from the slopes of these linear relationships. For validation of our method, it is applied to two kinds of capacitors and the results agree with those measured by EIS. Although EIS is known to be accurate in measuring CPE systems, our alternative approach offers a timely and reasonably precise diagnostic tool, balancing between ease of use and accuracy, especially beneficial for preliminary assessments before conducting further in-depth analysis.

Keywords

Acknowledgement

This work was supported by a Research Grant of Pukyong National University(2023).

References

  1. A. J. Bard and C. G. Zoski, Anal. Chem., 2000, 72(9), 346 A-352
  2. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, J. Chem. Educ., 2018, 95(2), 197-206.  https://doi.org/10.1021/acs.jchemed.7b00361
  3. M. Rafiee, D. J. Abrams, L. Cardinale, Z. Goss, A. Romero-Arenas, and S. S. Stahl, Chem. Soc. Rev., 2024, 53(2), 566-585.  https://doi.org/10.1039/D2CS00706A
  4. J. Gonzalez, E. Laborda, and A. Molina, J. Chem. Educ., 2023, 100(2), 697-706.  https://doi.org/10.1021/acs.jchemed.2c00944
  5. B.-K. Kim and K. Park, J. Electrochem. Sci. Technol., 2022, 13(3), 347-353.  https://doi.org/10.33961/jecst.2022.00129
  6. F. Scholz, ChemTexts, 2015, 1, 17. 
  7. C. Sandford, M. A. Edwards, K. J. Klunder, D. P. Hickey, M. Li, K. Barman, M. S. Sigman, H. S. White, and S. D. Minteer, Chem. Sci., 2019, 10(26), 6404-6422.  https://doi.org/10.1039/C9SC01545K
  8. X. Huang, Z. Wang, R. Knibbe, B. Luo, S. A. Ahad, D. Sun, and L. Wang, Energy Technol., 2019, 7(8), 1801001. 
  9. S. Aderyani, P. Flouda, S. A. Shah, M. J. Green, J. L. Lutkenhaus, and H. Ardebili, Electrochim. Acta, 2021, 390, 138822. 
  10. H. Wang and L. Pilon, Electrochim. Acta, 2012, 64, 130-139.  https://doi.org/10.1016/j.electacta.2011.12.118
  11. P. Bhojane, J. Energy Storage, 2022, 45, 103654. 
  12. A. Lasia, J. Phys. Chem. Lett., 2022, 13(2), 580-589.  https://doi.org/10.1021/acs.jpclett.1c03782
  13. B.-Y. Chang and S.-M. Park, Annu. Rev. Anal. Chem., 2010, 3, 207-229.  https://doi.org/10.1146/annurev.anchem.012809.102211
  14. V. Vivier and M. E. Orazem, Chem. Rev., 2022, 122(12), 11131-11168.  https://doi.org/10.1021/acs.chemrev.1c00876
  15. P. Cordoba-Torres, T. J. Mesquita, and R. P. Nogueira, J. Phys. Chem. C, 2015, 119(8), 4136-4147.  https://doi.org/10.1021/jp512063f
  16. E. F. Douglass Jr, P. F. Driscoll, D. Liu, N. A. Burnham, C. R. Lambert, and W. G. McGimpsey, Anal. Chem., 2008, 80(20), 7670-7677.  https://doi.org/10.1021/ac800521z
  17. B.-Y. Chang, J. Electrochem. Sci. Technol., 2022, 13(4), 479-485.  https://doi.org/10.33961/jecst.2022.00451
  18. D. A. Bograchev, Y. M. Volfkovich, and S. Martemianov, J. Electroanal. Chem., 2023, 935, 117322. 
  19. B.-Y. Chang, Electrochim. Acta, 2023, 462, 142741. 
  20. A. Sadkowski, Electrochim. Acta, 1993, 38(14), 2051-2054.  https://doi.org/10.1016/0013-4686(93)80339-2
  21. A. A. Sagues, S. C. Kranc, and E. I. Moreno, Corros. Sci., 1995, 37(7), 1097-1113.  https://doi.org/10.1016/0010-938X(95)00017-E
  22. V. Feliu, J. A. Gonzalez, and S. Feliu, Corros. Sci., 2007, 49(8), 3241-3255.  https://doi.org/10.1016/j.corsci.2007.03.004
  23. J. P. Zheng, C. M. Pettit, P. C. Goonetilleke, G. M. Zenger, and D. Roy, Talanta, 2009, 78(3), 1056-1062.  https://doi.org/10.1016/j.talanta.2009.01.014
  24. J. P. Zheng, P. C. Goonetilleke, C. M. Pettit, and D. Roy, Talanta, 2010, 81(3), 1045-1055.  https://doi.org/10.1016/j.talanta.2010.01.059
  25. A. Allagui, T. J. Freeborn, A. S. Elwakil, and B. J. Maundy, Sci. Rep., 2016, 6, 38568. 
  26. P. Charoen-amornkitt, T. Suzuki, and S. Tsushima, Electrochim. Acta, 2017, 258, 433-441.  https://doi.org/10.1016/j.electacta.2017.11.079
  27. P. Charoen-Amornkitt, T. Suzuki, and S. Tsushima, Electrochemistry, 2019, 87(4), 204-213.  https://doi.org/10.5796/electrochemistry.18-00082
  28. P. Charoen-Amornkitt, T. Suzuki, and S. Tsushima, J. Electrochem. Soc., 2020, 167(16), 166506. 
  29. C. Yun and S. Hwang, ACS Omega, 2021, 6(1), 367-373.  https://doi.org/10.1021/acsomega.0c04702
  30. M. Schalenbach, Y. E. Durmus, H. Tempel, H. Kungl, and R.-A. Eichel, Phys. Chem. Chem. Phys., 2021, 23(37), 21097-21105.  https://doi.org/10.1039/D1CP03381F
  31. S. M. Gateman, O. Gharbi, H. G. de Melo, K. Ngo, M. Turmine, and, V. Vivier, Curr. Opin. Electrochem., 2022, 36, 101133. 
  32. C. Costentin, J. Phys. Chem. Lett., 2020, 11(22), 9846-9849.  https://doi.org/10.1021/acs.jpclett.0c02667
  33. S.-Y. Hong and S.-M. Park, J. Phys. Chem. B, 2007, 111(33), 9779-9786. https://doi.org/10.1021/jp073025u