• Title/Summary/Keyword: Vacuum discharge tube

Search Result 36, Processing Time 0.027 seconds

Magnetron Sputter Coating of Inner Surface of 1-inch Diameter Tube

  • Han, Seung-Hee;An, Se-Hoon;Song, In-Seol;Lee, Keun-Hyuk;Jang, Seong-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.135-135
    • /
    • 2015
  • Tubes are of extreme importance in industries as for fluid channels or wave guides. Furthermore, some weapon systems such as cannons use the tubes as gun barrels. To increase the service life of such tubes, a protective coating must be applied to the tubes' inner surface. However, the coating methods applicable to the inner surface of the tubes are very limited due to the geometrical restriction. A small-diameter cylindrical magnetron sputtering gun can be used to deposit coating layers on the inner surface of the large-bore tubes. However, for small-bore tubes with the inner diameter of one inch (~25 mm), the magnetron sputtering method can hardly be accommodated due to the space limitation for permanent magnet assembly. In this study, a new approach to coat the inner surface of small-bore tubes with the inside diameter of one inch was developed. Instead of using permanent magnets for magnetron operation, an external electro-magnet assembly was adopted around the tube to confine the plasma and to sustain the discharge. The electro-magnet was operated in pulse mode to provide the strong axial magnetic field for the magnetron operation, which was synchronized with the negative high-voltage pulse applied to the water-cooled coaxial sputtering target installed inside the tube. By moving the electro-magnet assembly along the tube's axial direction, the inner surface of the tube could be uniformly coated. The inner-surface coating system in this study used the tube itself as the vacuum chamber. The SS-304 tube's inner diameter was 22 mm and the length was ~1 m. A water-cooled Cu tube (sputtering target) of the outer diameter of 12 mm was installed inside of the SS tube (substrate) at the axial position. The 50 mm-long electro-magnet assembly was fed by a current pulse of 250 A at the frequency and pulse width of 100 Hz and 100 usec, respectively. The calculated axial magnetic field strength at the center was ~0.6 Tesla. The central Cu tube was synchronously driven by a HiPIMS power supply at the same frequency of 100 Hz as the electro-magnet and the applied pulse voltage was -1200 V with a pulse width of 500 usec. At 150 mTorr of Ar pressure, the Cu deposition rate of ~10 nm/min could be obtained. In this talk, a new method to sputter coat the inner surface of small-bore tubes would be presented and discussed, which might have broad industrial and military application areas.

  • PDF

Noise Reduction Design of Plasma Display Panel (플라즈마 디스플레이의 저소음 설계)

  • Park, Dae-Kyong;Kweon, Hae-Sub;Jang, Dong-Seob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.369.2-369
    • /
    • 2002
  • For the evaluation of the plasma display panel (PDP)'s noise, vibration and sound characteristics of fanless PDP are measured and investigated. PDP is a type of two-electrode vacuum tube which operatres on the same principle as a household fluorescent light. An inert gas such as argon or neon is injected between two glass plates on which transparent electrodes have been formed, and the glass is illuminated by generating discharge. (omitted)

  • PDF

MICOWAVE PLASMA BURNER

  • Hong, Yong-Cheol;Shin, Dong-Hun;Lee, Sang-Ju;Jeon, Hyung-Won;Lho, Taihyeop;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.95-95
    • /
    • 2010
  • An apparatus for generating flames and more particularly the microwave plasma burner for generating high-temperature large-volume plasma flame was presented. The plasma burner was composed of micvrowave transmission lines, a field applicator, discharge tube, coal and gas supply systems, and a reactor. The plasma burner is operated by injecting coal powders into a 2.45 GHz microwave plasma torch and by mixing the resultant gaseous hydrogen and carbon compounds with plasma-forming gas. We in this work used air, oxygen, steam, and their mixtures as a discharge gas or oxidant gas. The microwave plasma torch can instantaneously vaporize and decompose the hydrogen and carbon containing fuels. It was observed that the flame volume of the burner was more than 50 times that of the torch plasma. The preliminary experiments were carried out by measuring the temperature profiles of flames along the radial and axial directions. We also investigated the characteristics for coal combustion and gasification by analyzing the byproducts from the exit of reactor. As expected, various byproducts such as hydrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, etc. were detected. It is expected that such burner cab be applied to coal gasification, hydrocarbon reforming, industrial boiler of power plants, etc.

  • PDF

Study on Noise Reduction of Plasma Display Panel (플라즈마 디스플레이의 소음 저감 연구)

  • Park, Dae-Kyong;Kweon, Hae-Sub;Jang, Dong-Seob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.693-698
    • /
    • 2002
  • For the evaluation of the plasma display panel (PDP)'s noise, vibration and sound characteristics of fanless PDP are measured and investigated. PDP is a type of two-electrode vacuum tube which operates on the same principle as a household fluorescent light. An inert gas such as argon or neon is injected between two glass plates on which transparent electrodes have been formed, and the glass is illuminated by generating discharge. For this discharge, both high voltage and currents are needed and cause an acoustic noise. We investigated the noise characteristics connected with both a electromagnetic elements from SMPS to panel through X, Y and logic board, and a mechanical elements form panel to case through transfer path which related with vibration and heat. To reduce the noise of PDP, a discharge pulse memory design related with both higher brightness and lower power consumption is important and mechanical characteristics connected with dissipation process of both heat and vibration generated by panel discharge must be investigated.

  • PDF

A Pulse Power Supply for a Metal Vapor Laser Using IGBTs (IGBT를 사용한 금속증기레이저용 펄스 전원)

  • 진정태;차병헌;김철중;이흥호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.415-419
    • /
    • 2004
  • A pulse power supply using IGBTs and MPC (magnetic pulse compression) circuit was developed for a metal vapor laser. The life time of the pulse power supply is expected to be much longer than that of a vacuum tube or thyratron type pulse power supply. A series-connected IGBT array generated a long pulse of its pulse width 2 ${\mu}\textrm{s}$ md then it was compressed to less than 100 ns by a three stage MPC circuit. This pulse power supply was applied to a laser plasma tube of 10 mm inner diameter and 0.5 m discharge length. and successfully operated.

A Study on the Analysis of a Negative Pressure in the Seawater Line of a Main Centeral Cooler (MCC) for a Large LNG Ship (대형 LNG선 주냉각기 해수라인의 부압현상 해석에 관한 연구)

  • Jin, Chang-Fu;SaGong, Woon-Gon;Kim, Jong-Gyu;Kim, Chung-Sik;Song, Young-Ho;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.893-900
    • /
    • 2008
  • The heat exchangers in the ships have been changed from the conventional shell & tube type to the plate type due to some merits as a compactness, a high thermal efficiency and a light-weight. In recent. it is reported that the vacuum phenomena were occurred in the seawater outlet piping of a main central cooler (MCC) on the ships. From the viewpoints of a common sense, the vacuum pressure in the seawater piping is rare event and difficult to be convinced because the seawater is pumped into the piping by a seawater pump with a high discharge head. However, the occurrence of a vacuum pressure in the seawater line of an MCC is real situation and often gives a severe damage to a rubber gasket of an MCC with a plate type heat transfer area. In this study, we analyzed the vacuum pressure in the seawater line of an MCC by using the simpl Bernoulli's equation and found that the vacuum pressure in the seawater line of an MCC is inevitable untill the installation postion of an MCC is not lowered.

A New Generation of Biocompatible Pulse-discharged Plasma by Marx Generator and Its Application on the Biomolecules

  • Park, Ji-Hun;Attri, Pankaj;Hong, Yeong-Jun;Kumar, Naresh;Kim, Sang-Yeop;Kim, Yeong-Jo;Lee, Gu-Hyeop;Lee, Seung-Mok;Park, Bong-Sang;Jeon, Su-Nam;Choe, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.240.2-240.2
    • /
    • 2014
  • Characteristics of pulse-discharged plasma in liquid and its biological applications to proteins are investigated by making use of high voltage Marx generator. The Marx generator has been consisted of 5 stages, where each charging capacitor is $0.5{\mu}F$ to generate a high voltage pulse with rising time of $1{\mu}s$. We have applied an input voltage of 6 kV to the each capacitor of $0.5{\mu}F$. The high voltage pulsed plasma has been generated inside a polycarbonate tube by a single-shot operation, where the breakdown voltage is measured to be 7 kV, current of 1.2 kA, and pulse width of ${\sim}1{\mu}s$ between the two electrodes of anode-cathode made of stainless steel, which are immersed into the liquids. For the investigation of the influence of pulsed plasma on biomolcules, we have focused on the amino acids, DNA, proteins, cell and cholesterol.

  • PDF

Development of Nonthermal Bioplasma Source Applicable to Human Liquid Fluids

  • Min, Boo-Ki;Oh, Hyun-Joo;Song, Ki-Baek;Uhm, Han-Sup;Kang, Seung-Oun;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.327-327
    • /
    • 2011
  • A nonthermal bioplasma source was developed for application to human liquid fluids by making use of nano-size tungsten tips. Characteristics of the plasma source are investigated. Here we have used the AC voltage system. The bioplasma source generated by a tungsten tip with quartz tube and ground electrode is a low-temperature plasma without making any noticeable damage to cells at a low power operation. The breakdown voltage and current signals are measured by high voltage probe (Tektronix P6015A) and current probe (P6021). Variation of breakdown temperature near the tip electrode is larger than that in the neighborhood of ground electrode. Bubble formation during discharge has been recorded and investigated by using the high speed camera. The existence and behavior of hydroxyl and superoxide radicals are detected and measured by spectrometers. The electrical and optical properties of breakdown characteristics are also investigated.

  • PDF

Pinhole Phenomena in the External Electrode Fluorescent Lamps (외부전극 헝광램프의 핀홀 현상)

  • Gill, Doh-H.;Kim, Sang-B.;Song, Hyuk-S.;Yu, Dong-G.;Lee, Sang-H.;Pak, Min-Sun;Kang, June-Gill;Cho, Guang-Sup;Cho, Mee-R.;Hwang, Myung-G.;Kim, Young-Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.266-272
    • /
    • 2006
  • Application of power higher than the optimum operation value to an external electrode fluorescent lamps(EEFL) leads to the formation of small holes, called pinholes, which subsequently leads to lamp failure. The pinholes come from the insulating breakdown of the capacitor which is the dielectric layer between an external electrode and glass tube. The power of insulation breakdown is proportional to the electric power applied to the lamp. When a lamp current is low in the glass tube of dielectric constant K, the dielectric field strength of pinholes is about 3K kV/mm. The field strength of insulation breakdown decreases as the lamp current increases.

Blackening of Inner Glass Surface in Fluorescent Lamps for LCD Backlight (LCD 백라이트용 형광램프의 흑화 현상)

  • Hwang, Ha-Chung;Jeong, Jong-Mun;Kim, Jung-Hyun;Kim, Dong-Jun;Bong, Jae-Hwan;Chung, Jae-Yoon;Koo, Je-Huan;Cho, Guang-Sup
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.481-486
    • /
    • 2008
  • The different degrees of blackening were observed at the inner surface of borosilicate, soda-lime, and aluminosilicate glass tubes having different sodium (Na) contents. The sodium contents ($Na_2O$) within the borosilicate, soda-lime, and aluminosilicate glass tubes were found to be 4%, 14%, and 0.06%, respectively. The degree of blackening was shown to increase as the sodium content within the glass of the fluorescent lamp containing Ne+Ar+Hg gas mixture. Higher degree of blackening was observed from the inner surface of the glass tube coated with $Y_2O_3$. The blackening was found to be originated from the amalgam of $NaHg_2$ generated by the chemical reaction between the mercury ions within the discharge gas and sodium within the glass tube during operation.