Pinhole Phenomena in the External Electrode Fluorescent Lamps

외부전극 헝광램프의 핀홀 현상

  • Gill, Doh-H. (Department of Electrophysics, Kwangwoon University) ;
  • Kim, Sang-B. (Department of Electrophysics, Kwangwoon University) ;
  • Song, Hyuk-S. (Department of Electrophysics, Kwangwoon University) ;
  • Yu, Dong-G. (Department of Electrophysics, Kwangwoon University) ;
  • Lee, Sang-H. (Department of Electronic Engineering, Kwangwoon University) ;
  • Pak, Min-Sun (Department of Electrophysics, Kwangwoon University) ;
  • Kang, June-Gill (Department of Electrophysics, Kwangwoon University) ;
  • Cho, Guang-Sup (Department of Electrophysics, Kwangwoon University) ;
  • Cho, Mee-R. (Korea Institute of Lighting Technology) ;
  • Hwang, Myung-G. (Korea Institute of Lighting Technology) ;
  • Kim, Young-Y. (Korea Institute of Lighting Technology)
  • Published : 2006.05.01

Abstract

Application of power higher than the optimum operation value to an external electrode fluorescent lamps(EEFL) leads to the formation of small holes, called pinholes, which subsequently leads to lamp failure. The pinholes come from the insulating breakdown of the capacitor which is the dielectric layer between an external electrode and glass tube. The power of insulation breakdown is proportional to the electric power applied to the lamp. When a lamp current is low in the glass tube of dielectric constant K, the dielectric field strength of pinholes is about 3K kV/mm. The field strength of insulation breakdown decreases as the lamp current increases.

외부전극 형광램프의 구동에서 과도한 전력을 인가하면, 외부전극 부분의 유리관 표면에 작은 원형의 구멍(핀홀)이 발생하여 램프가 파손된다. 핀홀은 외부전극과 유리관을 유전층으로 하는 캐패시터의 절연파괴이며, 이러한 절연파괴력은 인가되는 전력에 비례한다. 유전상수가 K인 램프에 흐르는 전류가 작을 때, 핀홀이 발생하는 유리관의 절연파괴 전기장의 세기는 약 3K kV/mm,이다. 이러한 절연파괴 전기장의 세기는 램프에 흐르는 전류가 커질수록 작아진다.

Keywords

References

  1. H. S. Kim, D. G. Joh, Y. G. Kim, J. J. Ko, D. I. Kim, C. W. Lee, E. H. Choi, G. Cho, B. H. Hong, H. K. Sohn, and B. K. Yu, SID'01 Digest, 687 (2001)
  2. S. J. Kim, N. O. Kwon, Y. M. Kim, D. O. Yang, J. W. Hong, Y. G. Lee, T. S. Cho, J. G. Kang, E. H. Choi, G. Cho, S. S. Kim, and B. H. Hong, SID'02 Digest, 1151 (2002)
  3. G. Cho, S. J. Kim, N. O. Kwon, Y. M. Kim, T. S. Cho, E. H. Choi, B. S. Kim, and J. G. Kang, IMID'02 Digest, 536 (2002)
  4. H. S. Yoo, IMID'02 Digest, 835 (2002)
  5. D. G. Joh, D. H. Gill, H. S. Kim, Y. M. Kim, Y. J. Kim, J. J. Ko, D. I. Kim, C. W. Lee, Y. H. Seo, E. H. Choi, and G. Cho, ASID'00 Digest, 470 (2000)
  6. N. O. Kwon, Y. M. Kim, H. S. Kim, S. J. Kim, D. H. Gill, T. S. Cho, Y. G. Kim, J. J. Ko, E. H. Choi, G. Cho, B. H. Hong, H. K. Sohn, and B. K. Yu, IDW'01 Digest, 625 (2001)
  7. S. J. Kim, N. O. Kwon, Y. M. Kim, D. O. Yang, J. W. Hong, Y. G. Lee, G. Cho, B. S. Kim, and J. G. Kang, IDW'02 Digest, 493 (2002)
  8. T. S. Cho, Y. M. Kim, N. O. Kwon, S. J. Kim, J. G. Kwon, E. H. Choi, and G. Cho, Jpn. J. Appl. Phys. 41, L355 (2002) https://doi.org/10.1143/JJAP.41.L355
  9. Y. M. Kim, S. J. Kim, N. O. Kwon, Y. G. Lee, E. H. Choi, G. Cho, B. S. Kim and J. G. Kang, IMID'02 Digest, 553 (2002)
  10. N. O. Kwon, Y. M. Kim, S. J. Kim, T. S. Cho, G. Cho, B. S. Kim and J. G. Kang, IMID'02 Diges, 539 (2002)
  11. G. Cho, B. S. Kim, D. O. Yang, J. W. Hong, Y. K. Lee, J. H. Lee, J. Y. Lee, D. H. Lee, E. H. Choi, and J. G. Kang, SID'03 Digest, 1368 (2003)
  12. B. S. Kim, J. G. Kang, S. M. Hong, S. B. Kim, M. R. Cho, D. H. Lee, E. H. Choi, and G. Cho, SID'03 Digest, 1372 (2003)