• Title/Summary/Keyword: Vacuum characteristics

Search Result 2,154, Processing Time 0.028 seconds

Ni/Au Electroless Plating for Solder Bump Formation in Flip Chip (Flip Chip의 Solder Bump 형성을 위한 Ni/Au 무전해 도금 공정 연구)

  • Jo, Min-Gyo;O, Mu-Hyeong;Lee, Won-Hae;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.700-708
    • /
    • 1996
  • Electroless plating technique was utilized to flip chip bonding to improve surface mount characteristics. Each step of plating procedure was studied in terms pf pH, plating temperature and plating time. Al patterned 4 inch Si wafers were used as substrstes and zincate was used as an activation solution. Heat treatment was carried out for all the specimens in the temperature range from room temperature to $400^{\circ}C$ for $30^{\circ}C$ minutes in a vacuum furnace. Homogeneous distribution of Zn particles of size was obtained by the zincate treatment with pH 13 ~ 13.5, solution concentration of 15 ~ 25% at room temperature. The plating rates for both Ni-P and Au electroless plating steps increased with increasing the plating temperature and pH. The main crystallization planes of the plated Au were found to be (111) a pH 7 and (200) and (111) at pH 9 independent of the annealing temperature.

  • PDF

A histomorphometric study on the effect of surface treatment on the osseointegration (티타늄 임플란트의 표면처리가 골유착에 미치는 영향에 관한 조직형태계측학적 연구)

  • Choi, Woong-Jae;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.445-456
    • /
    • 2009
  • Statement of problem: Many studies have been conducted to improve the primary stability of implants by providing bioactive surfaces via surface treatments. Increase of surface roughness may increase osteoblast activity and promote stronger bonding between bone and implant surface and it has been reported that bioactive surface or titanium can be obtained through alkali and heat treatment. Purpose: The purpose of this study was to evaluate the stability of alkali and heat treated implants via histomorphometric analysis. Material and methods: Specimens were divided into three groups; group 1 was the control group with machined surface, the other groups were treated for 24 hours in 5 M NaOH solution and heat treated for 1 hour at $600^{\circ}C$ in the atmosphere (group 2) and vacuum (group 3) conditions respectively. Surface characteristics were analyzed and fixtures were implanted into rabbits. The specimens were histologically and histomorphometrically compared according to healing periods and change in bone composition were analyzed with EPMA (Electron Probe Micro Analyzer). Results: 1. Groups treated with alkali and heat showed increase of oxidization layer and Na ions. Groups 2 which was heat treated in atmosphere showed significant increase of surface roughness (P<.05). 2. Histomorphometric analysis showed significant increase in BIC (bone to implant contact) according to increase in healing period and there was significant increases in groups 2 and 3 (P<.05). 3. BA(bone area) ratio showed similar results as contact ratio, but according to statistical analysis there was significant increase according to increase in healing period in group 2 only (P<.05). 4. EPMA analysis revealed no difference in gradation of bone composition of K, P, Ca, Ti in surrounding bone of implants according to healing periods but groups 2 and 3 showed increase of Ca and P in the initial stages. Conclusion: From the results above, it can be considered that alkali and heat treated implants in the atmosphere have advantages in osseointegration in early stages and may decrease the time interval between implantation and functional adaptation.

Annealing Effect on Magnetic and Electrical Properties of Amorphous Ge1-xMnx Thin Films (비정질 Ge1-xMnx 박막의 전기적, 자기적 특성에 미치는 열처리 효과)

  • Lee, Byeong-Cheol;Kim, Dong-Hwi;Anh, Tran Thi Lan;Ihm, Young-Eon;Kim, Do-Jin;Kim, Hyo-Jin;Yu, Sang-Soo;Baek, Kui-Jong;Kim, Chang-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.3
    • /
    • pp.89-93
    • /
    • 2009
  • Amorphous $Ge_{1-x}Mn_x$ semiconductor thin films grown by low temperature vapor deposition were annealed, and their electrical and magnetic properties have been studied. The amorphous thin films were $1,000{\sim}5,000\;{\AA}$ thick. Amorphous $Ge_{1-x}Mn_x$ thin films were annealed at $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$ and $700^{\circ}C$ for 3 minutes in high vacuum chamber. X-ray diffraction analysis reveals that as-grown $Ge_{1-x}Mn_x$ semiconductor thin films are amorphous and are crystallized by annealing. Crystallization temperature of amorphous $Ge_{1-x}Mn_x$ semiconductor thin films varies with Mn concentration. Amorphous $Ge_{1-x}Mn_x$ thin films have p-type carriers and the carrier type is not changed during annealing, but the electrical resistivity increases with annealing temperature. Magnetization characteristics show that the as-grown amorphous $Ge_{1-x}Mn_x$ thin films are ferromagnetic and the Curie temperatures are around 130 K. Curie temperature and saturation magnetization of annealed $Ge_{1-x}Mn_x$ thin films increase with annealing temperature. Magnetization behavior and X-ray analysis implies that formation of ferromagnetic $Ge_3Mn_5$ phase causes the change of magnetic and electrical properties of annealed $Ge_{1-x}Mn_x$ thin films.

Growth of CdSe thin films using Hot Wall Epitaxy method and their photoelectrical characteristics (HWE방법에 의한 CdSe 박막 성장과 광전기적 특성)

  • Hong, K.J.;Lee, K.K.;Lee, S.Y.;You, S.H.;Shin, Y.J.;Suh, S.S.;Jeong, J.W.;Jeong, K.A.;Shin, Y.J.;Jeong, T.S.;Kim, T.S.;Moon, J.D.;Kim, H.S.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.328-336
    • /
    • 1997
  • The CdSe thin films were grown on the Si(100) wafers by a hot wall epitaxy method (HWE). The source and substrate temperature are $600^{\circ}C$ and $430^{\circ}C$ respectively. The crystalline structure of epilayers was investigated by double crystal X-ray diffraction(DCXD). Hall effect on the sample was measured by the van der Pauw method and studied on the carrier density and mobility dependence on temperature. From Hall data, the mobility was increased in the temperature range 30K to 150K by impurity scattering and decreased in the temperature range 150k to 293k by the lattice scattering. In order to explore the applicability as a photoconductive cell, we measured the sensitivity(${\gamma}$), the ratio of photocurrent to darkcurrent(pc/dc), maximum allowable power dissipation(MAPD), spectral response and response time. The results indicated that the photoconductive characteristic were the best for the samples annealed in Cu vapor compare with in Cd, Se, air and vacuum vapour. Then we obtained the sensitivity of 0.99, the value of pc/dc of $1.39{\times}10^{7}$, the MAPD of 335mW, and the rise and decay time of 10ms and 9.5ms, respectively.

  • PDF