• Title/Summary/Keyword: Vaccine candidate

Search Result 135, Processing Time 0.032 seconds

Complete genome sequence of Lactobacillus plantarum SK156, a candidate vehicle for mucosal vaccine delivery

  • Hwang, In-Chan;Kim, Sang Hoon;Kang, Dae-Kyung
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.956-958
    • /
    • 2020
  • Lactobacillus plantarum SK156 was isolated from traditional Korean food. The genome of SK156 strain consists of a circular chromosome (3,231,383 bp) with guanine (G) + cytosine (C) content of 44.56%. Among the predicted 2,991 protein-coding genes, the genome included genes encoding for α-amylase, which hydrolyzes α-bonds of polysaccharides. Genomic sequencing of L. plantarum SK156 will give information on the mechanism involved in the enzymatic degradation of polysaccharides and its application for improving feed efficiency.

Generation of a cold-adapted PRRSV with a nucleotide substitution in the ORF5 and numerous mutations in the hypervariable region of NSP2

  • Do, Van Tan;Dao, Hoai Thu;Hahn, Tae-Wook
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.85.1-85.6
    • /
    • 2020
  • A cold-adapted porcine reproductive and respiratory syndrome virus (CA-VR2332) was generated from the modified live virus strain VR2332. CA-VR2332 showed impaired growth when cultured at 37℃ with numerous mutations (S731F, E819D, G975E, and D1014N) in the hypervariable region of the NSP2, in which the mutation S731F might play a vital role in viral replication at 30℃. Conserved amino acid sequences of the GP5 protein suggests that CA-VR2332 is a promising candidate for producing an effective vaccine against PRRSV infection. Further studies on replication and immunogenicity in vivo are required to evaluate the properties of CA-VR2332.

Immunological Characterization of Full and Truncated Recombinant Clones of ompH(D:4) Obtained from Pasteurella multocida (D:4) in Korea

  • Kim, Young-Hwan;Cheong, Ki-Young;Shin, Woo-Seok;Hong, Sung-Youl;Woo, Hee-Jong;Kwon, Moo-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1529-1536
    • /
    • 2006
  • We cloned a gene of ompH(D:4) from pigs infected with P. multocida D:4 in Korea [16]. The gene is composed of 1,026 nucleotides coding 342 amino acids (aa) with a signal peptide of 20 aa (GenBank accession number AY603962). In this study, we analyzed the ability of the ompH(D:4) to induce protective immunity against a wild-type challenge in mice. To determine appropriate epitope(s) of the gene, one full and three different types of truncated genes of the ompH(D:4) were constructed by PCR using pET32a or pRSET B as vectors. They were named ompH(D:4)-F (1,026 bp [1-1026] encoding 342 aa), ompH(D:4)-t1 (693 bp [55-747] encoding 231 aa), ompH(D:4)-t2 (561 bp [187-747] encoding 187 aa), and ompH(D:4)-t3 (540 bp [487-1026] encoding 180 aa), respectively. The genes were successfully expressed in Escherichia coli BL21(DE3). Their gene products, polypeptides, OmpH(D:4)-F, -t1, -t2, and -t3, were purified individually using nickel-nitrilotriacetic acid (Ni-NTA) affinity column chromatography. Their $M_rs$ were determined to be 54.6, 29, 24, and 23.2 kDa, respectively, using SDS-PAGE. Antisera against the four kinds of polypeptides were generated in mice for protective immunity analyses. Some $50{\mu}g$ of the four kinds of polypeptides were individually provided intraperitoneally with mice (n=20) as immunogens. The titer of post-immunized antiserum revealed that it grew remarkably compared with pre-antiserum. The lethal dose of the wild-type pathogen was determined at $10{\mu}l$ of live P. multocida D:4 through direct intraperitoneal (IP) injection, into post-immune mice (n=5, three times). Some thirty days later, the lethal dose ($10{\mu}l$) of live pathogen was challenged into the immunized mouse groups [OmpH(D:4)-F, -t1, -t2, and -t3; n=20 each, two times] as well as positive and negative control groups. As compared within samples, the OmpH(D:4)-F-immunized groups showed lower immune ability than the OmpH(D:4)-t1, -t2, and -t3. The results show that the truncated-OmpH(D:4)-t1, -t2, and -t3 can be used for an effective vaccine candidate against swine atrophic rhinitis caused by pathogenic P. multocida (D:4) isolated in Korea.

The protective effects of BMSA1 and BMSA5-1-1 proteins against Babesia microti infection

  • Yu Chun Cai;Chun Li Yang;Peng Song;Muxin Chen;Jia Xu Chen
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.1
    • /
    • pp.53-63
    • /
    • 2024
  • The intracellular parasite Babesia microti is among the most significant species causing human babesiosis and is an emerging threat to human health worldwide. Unravelling the pathogenic molecular mechanisms of babesiosis is crucial in developing new diagnostic and preventive methods. This study assessed how priming with B. microti surface antigen 1 (BHSA 1) and seroreactive antigen 5-1-1 (BHSA 5-1-1) mediate protection against B. microti infection. The results showed that 500 ㎍/ml rBMSA1 and rBMSA5-1-1 partially inhibited the invasion of B. microti in vitro by 42.0±3.0%, and 48.0±2.1%, respectively. Blood smears revealed that peak infection at 7 days post-infection (dpi) was 19.6%, 24.7%, and 46.7% in the rBMSA1, rBmSA5-1-1, compared to the control groups (healthy mice infected with B. microti only), respectively. Routine blood tests showed higher white blood cell, red blood cell counts, and haemoglobin levels in the 2 groups (BMSA1 and BMSA5 5-1-1) than in the infection control group at 0-28 dpi. Moreover, the 2 groups had higher serum interferon-γ, tumor necrosis factor-α and Interleukin-17A levels, and lower IL-10 levels than the infection control group throughout the study. These 2 potential vaccine candidate proteins partially inhibit in vitro and in vivo B. microti infection and enhance host immunological response against B. microti infection.

$Fasciola$ $gigantica$ Fatty Acid Binding Protein (FABP) as a Prophylactic Agent against $Schistosoma$ $mansoni$ Infection in CD1 Mice

  • Aly, Ibrahim Rabia;Diab, M.;El-Amir, A.M.;Hendawy, M.;Kadry, S.
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.1
    • /
    • pp.37-43
    • /
    • 2012
  • Although schistosomicidal drugs and other control measures exist, the advent of an efficacious vaccine remains the most potentially powerful means for controlling this disease. In this study, native fatty acid binding protein (FABP) from $Fasciola$ $gigantica$ was purified from the adult worm's crude extract by saturation with ammonium sulphate followed by separation on DEAE-Sephadex A-50 anion exchange chromatography and gel filtration using Sephacryl HR-100, respectively. CD1 mice were immunized with the purified, native $F.$ $gigantica$ FABP in Freund's adjuvant and challenged subcutaneously with 120 $Schistosoma$ $mansoni$ cercariae. Immunization of CD1 mice with $F.$ $gigantica$ FABP has induced heterologous protection against $S.$ $mansoni$, evidenced by the significant reduction in mean worm burden (72.3%), liver and intestinal egg counts (81.3% and 80.8%, respectively), and hepatic granuloma counts (42%). Also, it elicited mixed $IgG_1/IgG_{2b}$ immune responses with predominant $IgG_1$ isotype, suggesting that native $F.$ $gigantica$ FABP is mediated by a mixed Th1/Th2 response. However, it failed to induce any significant differences in the oogram pattern or in the mean granuloma diameter. This indicated that native $F.$ $gigantica$ FABP could be a promising vaccine candidate against $S.$ $mansoni$ infection.

Immunization of Mice with Recombinant Brucella abortus Organic Hydroperoxide Resistance (Ohr) Protein Protects Against a Virulent Brucella abortus 544 Infection

  • Hop, Huynh Tan;Reyes, Alisha Wehdnesday Bernardo;Simborio, Hannah Leah Tadeja;Arayan, Lauren Togonon;Min, Won Gi;Lee, Hu Jang;Lee, Jin Ju;Chang, Hong Hee;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.190-196
    • /
    • 2016
  • In this study, the Brucella abortus ohr gene coding for an organic hydroperoxide resistance protein (Ohr) was cloned into a maltose fusion protein expression system (pMAL), inserted into Escherichia coli, and purified, and its immunogenicity was evaluated by western blot analysis using Brucella-positive mouse sera. The purified recombinant Ohr (rOhr) was treated with adjuvant and injected intraperitoneally into BALB/c mice. A protective immune response analysis revealed that rOhr induced a significant increase in both the IgG1 and IgG2a titers, and IgG2a reached a higher level than IgG1 after the second and third immunizations. Additionally, immunization with rOhr induced high production of IFN-γ as well as proinflammatory cytokines such as TNF, MCP-1, IL-12p70, and IL-6, but a lesser amount of IL-10, suggesting that rOhr predominantly elicited a cell-mediated immune response. In addition, immunization with rOhr caused a significantly higher degree of protection against a virulent B. abortus infection compared with a positive control group consisting of mice immunized with maltose-binding protein. These findings showed that B. abortus rOhr was able to induce both humoral and cell-mediated immunity in mice, which suggested that this recombinant protein could be a potential vaccine candidate for animal brucellosis.

Delivery of Chicken Egg Ovalbumin to Dendritic Cells by Listeriolysin O-Secreting Vegetative Bacillus subtilis

  • Roeske, Katarzyna;Stachowiak, Radoslaw;Jagielski, Tomasz;Kaminski, Michal;Bielecki, Jacek
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.122-135
    • /
    • 2018
  • Listeriolysin O (LLO), one of the most immunogenic proteins of Listeria monocytogenes and its main virulence factor, mediates bacterial escape from the phagosome of the infected cell. Thus, its expression in a nonpathogenic bacterial host may enable effective delivery of heterologous antigens to the host cell cytosol and lead to their processing predominantly through the cytosolic MHC class I presentation pathway. The aim of this project was to characterize the delivery of a model antigen, chicken egg ovalbumin (OVA), to the cytosol of dendritic cells by recombinant Bacillus subtilis vegetative cells expressing LLO. Our work indicated that LLO produced by non-sporulating vegetative bacteria was able to support OVA epitope presentation by MHC I molecules on the surface of antigen presenting cells and consequently influence OVA-specific cytotoxic T cell activation. Additionally, it was proven that the genetic context of the epitope sequence is of great importance, as only the native full-sequence OVA fused to the N-terminal fragment of LLO was sufficient for effective epitope delivery and activation of $CD8^+$ lymphocytes. These results demonstrate the necessity for further verification of the fusion antigen potency of enhancing the MHC I presentation, and they prove that LLO-producing B. subtilis may represent a novel and attractive candidate for a vaccine vector.

Influenza M1 Virus-Like Particles Consisting of Toxoplasma gondii Rhoptry Protein 4

  • Lee, Su-Hwa;Lee, Dong-Hun;Piao, Ying;Moon, Eun-Kyung;Quan, Fu-Shi
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.143-148
    • /
    • 2017
  • Toxoplasma gondii infections occur throughout the world, and efforts are needed to develop various vaccine candidates expressing recombinant protein antigens. In this study, influenza matrix protein (M1) virus-like particles (VLPs) consisting of T. gondii rhoptry antigen 4 (ROP4 protein) were generated using baculovirus (rBV) expression system. Recombinant ROP4 protein with influenza M1 were cloned and expressed in rBV. SF9 insect cells were coinfected with recombinant rBVs expressing T. gondii ROP4 and influenza M1. As the results, influenza M1 VLPs showed spherical shapes, and T. gondii ROP4 protein exhibited as spikes on VLP surface under transmission electron microscopy (TEM). The M1 VLPs resemble virions in morphology and size. We found that M1 VLPs reacted with antibody from T. gondii-infected mice by western blot and ELISA. This study demonstrated that T. gondii ROP4 protein can be expressed on the surface of influenza M1 VLPs and the M1 VLPs containing T. gondii ROP4 reacted with T. gondii-infected sera, indicating the possibility that M1 VLPs could be used as a coating antigen for diagnostic and/or vaccine candidate against T. gondii infection.

Brucella melitensis omp31 Mutant Is Attenuated and Confers Protection Against Virulent Brucella melitensis Challenge in BALB/c Mice

  • Verdiguel-Fernandez, L;Oropeza-Navarro, R;Ortiz, Adolfo;Robles-Pesina, MG;Ramirez-Lezama, J;Castaneda-Ramirez, A;Verdugo-Rodriguez, A
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.497-504
    • /
    • 2020
  • For control of brucellosis in small ruminants, attenuated B. melitensis Rev1 is used but it can be virulent for animals and human. Based on these aspects, it is essential to identify potential immunogens to avoid these problems in prevention of brucellosis. The majority of OMPs in the Omp25/31 family have been studied because these proteins are relevant in maintaining the integrity of the outer membrane but their implication in the virulence of the different species of this genus is not clearly described. Therefore, in this work we studied the role of Omp31 on virulence by determining the residual virulence and detecting lesions in spleen and testis of mice inoculated with the B. melitensis LVM31 mutant strain. In addition, we evaluated the conferred protection in mice immunized with the mutant strain against the challenge with the B. melitensis Bm133 virulent strain. Our results showed that the mutation of omp31 caused a decrease in splenic colonization without generating apparent lesions or histopathological changes apparent in both organs in comparison with the control strains and that the mutant strain conferred similar protection as the B. melitensis Rev1 vaccine strain against the challenge with B. melitensis Bm133 virulent strain. These results allow us to conclude that Omp31 plays an important role on the virulence of B. melitensis in the murine model, and due to the attenuation shown by the strain, it could be considered a vaccine candidate for the prevention of goat brucellosis.

Active Immunization Study of Colon Cancer Derived 1-8D Peptide in HHD Mice

  • Jung, Hun-Soon;Ahn, In-Sook;Do, Hyung-Ki;Lemonnier, Francois A.;Song, Kuk-Hyun;Do, Myoung-Sool
    • IMMUNE NETWORK
    • /
    • v.5 no.3
    • /
    • pp.157-162
    • /
    • 2005
  • Background: 1-8D gene is a member of human 1-8 interferon inducible gene family and was shown to be overexpressed in fresh colon cancer tissues. Three peptides 1-6, 3-5 and 3-7 derived from human 1-8D gene were shown to have immunogenicity against colon cancer. Methods: To study tumor immunotherapy, of three peptides we established an active immunization model using HHD mice. $D^{b-/-}{\times}{\beta}2$ microglobulin $({\beta}2m)$ null mice transgenic for a chimeric HLA-$A2.1/D^{b-}\;{\beta}2m$ single chain (HHD mice) were challenged with B16/HHD/1-8D tumor cells and were immunized with irradiated peptide-loaded RMA- S/HHD/B7.1 transfectants. In therapy model tumor growth was retarded in HHD mice that were injected with 3-5 peptide-loaded RMA-S/HHD/B7.1. In survival test vaccination with 1-8D-derived peptide protects HHD mice from tumor progression after tumor challenge. Results: These studies show that peptide 3-5 derived from 1-8D gene can be the most effective candidate for the vaccine of immunotherapy against colon cancer and highlight 1-8D gene as putative colon carcinoma associated antigens. Conclusion: We demonstrated that RMA-S/HHD/ B7.1 loaded with 1-8D peptides, especially 3-5, immunization generates potent antitumor immunity against tumor cells in HHD mice and designed active immunization as proper immunotherapeutic protocols.