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INTRODUCTION

Toxoplasma gondii is a protozoan parasite that can infect 
most animals and humans, with a worldwide distribution, 
permanently infecting nearly 20% of the global population [1-
4]. Specific groups of patients who are immunologically im-
paired could be severe. Thus, prevention and diagnosis of T. 

gondii infection become crucial for the surveillance and con-
trol. Recent important progress has been made identifying an-
ti-toxoplasma vaccine candidates that can stimulate an immu-
nological response [4]. However, vaccine efficacy is not suc-
cessful. The diagnosis of toxoplasmosis in humans is made by 
biological, serological, histological, molecular methods, para-
site isolation, or by some combination of the above [5,6]. 
Tachyzoite lysate antigen (TLA) as a coating antigen used in 
conventional indirect ELISAs showed different results, result-
ing in difficulty to standardize and evaluation. Commercial 
test kits were used to determine IgM and/or IgG antibodies 

showed false-positive, and the reported results are difficult to 
interpret [6-8]. Thus, recombinant proteins as alternative ap-
proach have been used since the recombinant protein showed 
advantages in the precision and standardization of the antigen 
[6]. 

Numerous recombinant antigens, including granule anti-
gens GRA1, GRA2, GRA4, GRA6, GRA7, and GRA8, rhoptry 
proteins ROP1 and ROP2, matrix protein MAG1, microneme 
proteins MIC2, MIC3, MIC4, and MIC5, and surface antigens 
SAG1 and SAG2, have been expressed in Escherichia coli or 
yeast, and their potential diagnostic value or vaccine efficacy 
were evaluated in humans or animals [9-14]. We recently re-
ported that recombinant virus-like particles (VLPs), containing 
T. gondii inner membrane complex (IMC), have shown that 
VLPs are highly immunogenic [4]. Since VLPs are formed on 
the surface with high-density particles acting as antigens, 
which can induce a high immune response [15], indicating 
that VLPs could be used as a protein antigen for diagnostic po-
tential or vaccine candidate. 

Malaria is one of the most common infectious diseases and 
a great public health problem worldwide. Identification of po-
tential diagnostic and vaccine development are particularly 
important. Since rhoptry protein in malaria parasite is very 
important in invasion of its host cells [16], and rhoptries are 
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major players in T. gondii invasion also [17], we assume that 
cross-reactivity may exist between T. gondii and malaria. In this 
study, we, for the first time, generated virus-like particles con-
taining T. gondii ROP4 protein. We found that T. gondii ROP4 
protein can be expressed on the surface of influenza M1 VLPs. 
VLP protein antigens showed IgG reactivity with T. gondii-in-
fected sera, and IgG cross-reactivity with Plasmodium berghei 
malaria-infected sera. 

   

MATERIALS AND METHODS

Parasites, cells, and antibodies
Toxoplasma gondii RH strain and ME49 strain were maintained 

according to the methods described previously [18-20]. T. gondii 
RH stain was used for RNA extraction, and T. gondii ME49 was 
used to infect mice and to collect sera. Spodoptera frugiperda Sf9 
cells were maintained in suspension in serum-free SF900 II me-
dium (Invitrogen, Carlsbad, California, USA) at 27˚C in spinner 
flasks at 130 to 140 rpm. S. frugiperda Sf9 cells were used for 
production of recommended baculovirus (rBV) and virus-like 
particles. Horseradish peroxidase (HRP)-conjugated goat anti-
mouse immunoglobulin G (IgG) was purchased from Southern 
Biotech (Birmingham, Alabama, USA).

Cloning of T. gondii rhoptry protein (ROP4) and influenza 
M1

T. gondii RH strain was collected from mice, and RNA was 
extracted using RNeasy Mini Kit (Qiagen, Valencia, California, 
USA). Total RNA was reversely transcribed to cDNA using 
Prime Script 1st strand cDNA synthesis kit according to the 
manufacturer’s instructions (Takara, Otsu, Japan). T. gondii 
ROP4 gene was amplified by PCR from cDNA with primers. 
The primers were designed according to the nucleotide se-
quence of ROP4 in GenBank (accession no. EU047558): for-
ward (5'-AAAGCATGCACCATGGGGCACCCTACCTCTTT-3') 
and reverse (5 '-TTAGGTACCTCACGTTTCCGGTGGTG-
GCAT-3') with SphI and KpnI restriction enzyme sites (under-
lined). PCR product was cloned into pFastBac vector (Invitro-
gen) as described previously [21]. For influenza M1 (accession 
no. EF4 67824, 1,027 bp) gene cloning, A/PR/8/34 virus was 
inoculated into MDCK cells, and total viral RNA was extracted 
as mentioned above. Reverse transcription (RT) and PCR were 
performed on extracted viral RNA using the 1-step RT-PCR sys-
tem (Invitrogen) with gene specific oligonucleotide primers. 
The following primer pairs were used for M1: 5́ -TCCCCCGGG 

CCACCATGAGCCTTCTGACCGAGGTC-3´; reverse primer, 
5´-TTACTTCTAGATTACTTGAACCGTTGCATCTG-3´; SmaI and 
XbaI sites are underlined. A cDNA fragment containing the M1 
was cloned into pFastBac vector (Invitrogen). The recombi-
nant plasmids ROP4-pFastBac or M1-pFastBac were trans-
formed into an E. coli DH5-α. The targeted fragments of the 
ROP4 gene and M1 gene were identified by restriction diges-
tion and sequencing analysis. Confirmed recombinant plas-
mids were transformed into a DH10-Bac and extracted using 
FavorPrep gel purification Kit (Favorgen, Cheshire, UK). The 
recombinant plasmid DNAs (DH10-Bac) were stored at -20˚C 
until used.

Generation of recombinant baculovirus (rBV) and VLPs
To generate rBV, transfections of recombinant plasmid 

ROP4-pFastBac or M1-pFastBac were transfected into the Sf9 
cells using cellfectin II (Invitrogen) as according to the manu-
facturer. To produce VLPs containing ROP4 and M1, Sf9 cells 
were coinfected with rBVs expressing ROP4 or M1. VLPs re-
leased into the cell culture supernatants were harvested 3 days 
after infection and cleared by centrifugation at 6,000 rpm for 
30 min at 4˚C to remove cells. Supernatants containing VLPs 
were concentrated by high-speed centrifugation (45,000 g for 
30 min) and purified through a 15-30-60% discontinuous su-
crose gradient at 45,000 g for 1 hr at 4˚C. VLP bands between 
30% and 60% were harvested and pelleted by high-speed cen-
trifugation (45,000 g for 30 min). The VLPs were resuspended 
in 0.1 M PBS overnight at 4˚C and concentration was deter-
mined using QuantiPro BCA Assay Kit (Sigma-Aldrich, St. 
Louis, Missouri, USA).

Characterization of VLPs
To characterize the VLPs, the morphology was confirmed by 

electron microscopy. For electron microscopy, negative stain-
ing of VLPs was performed followed by transmission electron 
microscopy as described previously (Tecnai G2 spirit, FEI, Hill-
sboro, Oregon, USA) [21].

Reactivity of VLPs with T. gondii-infected mouse sera
Female inbred BABL/c (aged 8 weeks; Nara Biotech, Kyong-

gi-do, Korea) were used. All animal experiments and husband-
ry involved in these studies were conducted under the guide-
lines of the Kyung Hee University IACUC. Mice were infected 
with T. gondii (ME49), and the mouse sera were collected at 
week 4 and stored at -20˚C until used. VLPs containing T. gon­
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dii ROP4 protein was identified by western blot. Monoclonal 
mouse anti-M1 antibody was used to confirm influenza M1 
protein content. The levels of IgG antibody was determined by 
ELISA. Flat-immunoplates (96-well) were coated with 100 µl 
of VLPs at a concentration of 4 µg/ml in 0.05 M carbonate bi-
carbonate buffer (pH 9.6) per well and incubated overnight at 
4˚C. The mouse serum samples were serially diluted in PBST 
(100 µl/well) and incubated in the plates for 1.5 hr at 37˚C. 
Horseradish peroxidase (HRP)-conjugated goat anti-mouse 
immunoglobulin G (IgG) was purchased from Southern Bio-
tech. 

IgG cross-activity of VLPs with Plasmodium berghei 
antibody

IgG cross-reactivity of VLPs was determined by reacting with 
Plasmodium berghei-infected mouse sera. P. berghei was kindly 
provided by Dr. YC Hong at Kyungpook National University. 
Mice were infected with P. berghei, and mouse sera were col-
lected at 4 weeks and stored at -20˚C until used. ELISA was 
performed to determine IgG cross-reactivity between T. gondii 
and P. berghei. T. gondii-, and P. berghei-infected mouse sera 

were used for primary antibodies at 1:50 dilution, and HRP-
conjugated goat anti-mouse IgG antibodies were used as sec-
ondary antibodies. 

Statistics
All parameters were recorded for individuals within groups. 

Data were compared using analysis of variance and the non-
parametric 1-way Kruskal–Wallis test in the PC-SAS system 
(SAS Institute, Cary, North Carolina, USA). A P-value of< 0.05 
was considered to be significant.

RESULTS

Recombinant constructs generated
T. gondii ROP4 and influenza M1 genes were amplified by 

PCR or RT-PCR, respectively. As shown in Fig. 1, ROP4 was 
1,728 bp (A), and M1 was 1,027 bp (B) in size, respectively. 
The amplified PCR products were cloned into pFastBac vec-
tors, and the insertions of ROP4 and M1 in pFastBac vectors 
were confirmed by restriction enzymes (Fig. 2A, B). The nucle-
otide sequences of the T. gondii ROP4 and influenza M1 genes 
were identical to previously published sequences (accession 
nos. EU047558 for T. gondii ROP4 and EF467824 for M1) by 
DNA sequencing (Eurofins MWG Operon). 

 
Influenza M1 VLPs produced 

To produce M1 VLPs, recombinant baculovirus (rBV) ex-
pressing T. gondii ROP4 or influenza M1 were co-infected into 
Sf9 cells, and thus, M1 VLPs were produced. The VLP-produc-
ing Sf9 cells (Fig. 3B) are significantly larger in size than nor-
mal control Sf9 cells (Fig. 3A). The size and morphology of in-

Fig. 1. PCR amplification of T. gondii ROP4 (A) and influenza M1 
genes (B). T. gondii ROP4 (1,728 bp) gene was RCR-amplified 
from cDNA synthesized using a Prime Script 1st Strain cDNA 
Synthesis Kit using total RNA extracted from T. gondii RH. Influ-
enza M1 gene was PCR amplified from total RNA extract from in-
fluenza virus (A/PR/8/34). M, DNA marker; TgROP4, T. gondii 
ROP4; M1, influenza M1. 

M TgROP4

1,728 bp2 Kb

1 Kb

A M M1 (A/PR/8/34)
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B

Fig. 3. Production of virus-like particles (VLPs). pFastBac plas-
mids containing ROP4 or M1 were transfected into Sf9 cells, re-
spectively, and baculoviruses expressing T. gondii ROP4 or influ-
enza M1 were generated. Recombinant baculovirus was coin-
fected into Sf9 cells, and the VLPs were produced. A, Normal 
SF9 cells; B, VLP-producing cells.

Fig. 2. Construction of pFastBac vectors. T. gondii ROP4 gene 
and influenza M1 were cloned into the pFastBac with SphI/KpnI 
and EcoRI/XhoI enzymes, respectively, resulting in pFastbac plas-
mids containing T. gondii ROP 4 (A) or M1 (B).  
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fluenza VLPs were examined under electron microscopy. M1 
VLPs showed spherical shapes with spikes on their surfaces, 
and generated M1 VLPs resembled virions in morphology and 
size (Fig. 4A, B). 

Influenza M1 VLPs reacted with sera from T. gondii 
(ME49)-infected mice  

Influenza M1 VLPs containing ROP4 were used to react with 
antibodies from T. gondii-infected mice by western and ELISA. 
As seen in Fig. 5, the incorporation of T. gondii ROP4 (63 kDa) 
and influenza M1 (28 kDa) into VLPs was confirmed by west-
ern blot. As seen in Fig. 6, compared to naïve control mouse 
sera, high levels of IgG antibodies were detected from T. gondii-
infected mouse sera at 1:100, 1:500, and 1:2,500 dilutions 
when M1 VLPs were used as coating antigens by ELISA.  

Influenza M1 VLPs induced IgG cross-reactivity with 
Plasmodium berghei-infected sera

Influenza M1 VLPs containing T. gondii ROP4 were used to 
determine IgG cross-reactivity with antibodies from P. berghei-
infected mice. As seen in Fig. 7, compared to naïve mouse 
control, higher levels of IgG antibodies were detected from P. 

berghei-infected mouse sera, indicating IgG cross-reactivity be-

tween T. gondii and P. berghei. 

DISCUSSION

In this study, for the first time, we successfully cloned T. gon­

dii ROP4 gene into pFastBac vector and generated baculovirus 
expressing T. gondii ROP4. Influenza M1 protein expressed by 
baculovirus expression system contributed to the formation of 
influenza-like shape of VLPs [22]. During the VLP generation, 
baculoviruses expressing T. gondii ROP4 or M1 incorporated 

63

28 M1

TgROP4

kD 40 μg 8 μg 1.6 μg

Fig. 5. Reactivity of M1 VLPs with T. gondii antibody by western 
blot. A total of 40, 8, and 1.6 µg of M1 VLPs were loaded per 
lane. Polyclonal mouse anti-T. gondii (ME49) antibody was used 
to probe T. gondii ROP4 protein (63kD), and monoclonal anti-M1 
antibody was used to probe influenza M1 protein (28kD). Thus, T. 
gondii ROP4 (TgROP4) and influenza M1 proteins were identified, 
respectively, by western blot. 

Fig. 7. IgG cross-reactivity of M1 VLPs containing T. gondii ROP4 
with Plasmodium berghei-infected mouse sera. M1 VLPs con-
taining T. gondii ROP4 were coated onto 96-well pates, and P. 
berghei-infected mouse sera were used as primary antibodies. 
Then, IgG cross-reactivity was determined using ELISA. A higher 
level of IgG cross-reactivity of M1 VLPs with P. berghei-infected 
sera was detected when M1 VLPs as coating antigens (*P < 
0.05).
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Fig. 6. M1 VLPs as a coating antigen reacted with T. gondii anti-
body. Mice were infected with T. gondii (ME49) and 1 month later, 
mouse sera were collected. M1 VLPs were coated onto 96-well 
plates, and collected sera were serially diluted and used as a pri-
mary antibody to determine IgG antibody responses using ELISA. 
Higher levels of IgG antibody responses were detected when M1 
VLPs as coating antigens. 

Fig. 4. Electron microscopy examination. Transmission electronic 
microscopy was used to characterize M1 VLPs morphologically. 
Negative staining electron microscopy of influenza M1 VLPs was 
performed. A, Diagram of the M1 VLPs; B, M1 VLPs containing T. 
gondii ROP 4 under EM.
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into VLPs, which showed spherical shapes (M1) with spikes (T. 
gondii ROP4) on the VLP surface [4]. We found that VLP pro-
teins were clearly recognized by polyclonal antibodies of T. 
gondii by western blot (Fig. 5). VLPs reacted with antibodies 
from mouse infected with T. gondii (Fig. 6), indicating VLPs 
consisting of T. gondii ROP4, could be used as a coating anti-
gen for diagnostic and/or vaccine candidate against T. gondii 
infection. To determine the cross-reactivity between T. gondii 
and malaria, in our current study, malaria mouse model P. ber­
ghei was used. VLPs containing T. gondii rhoptry structure 
showed IgG cross-reactivity with P. berghei-infected mouse sera 
(Fig. 7), indicating that VLPs could be used as a vaccine candi-
date against P. berghei infection as well. Further studies are 
needed to elucidate their potential as a vaccine candidate 
against T. gondii and other coccidian species infections having 
rhoptry structures.        

Although, a number of different recombinant proteins of T. 
gondii expressed by E. coli have been used as antigens for diag-
nostic tool or vaccine candidates, the vaccine efficacy induced 
by the recombinant proteins expressed by E. coli is largely lim-
ited. Mice immunized with the recombinant protein vaccines 
mostly showed little protection against challenge infection 
[23-26]. In our recent study, we have reported that VLPs target-
ed T. gondii inner membrane complex sub-compartment (IMC) 
induced humoral and cellular immunity, resulting in protec-
tion (100% survival) [4]. This promising result indicated that 
VLPs could be an alternative strategy for the novel vaccine [4]. 
The VLPs contained repetitive high density displays of T. gondii 
IMC surface proteins induced systemic and mucosal immune 
responses [15].

ROP4, a member of the prominent ROP2-protein family, is 
released from rhoptries, participating in the parasite-host cell 
penetration process [27]. Additionally, ROP4 antigen ex-
pressed by E. coli elicits strong cellular and humoral immune 
responses in immunized mice, which are partly protective 
against T. gondii challenge [28]. This T. gondii ROP4 protein is 
also useful as a diagnostic tool for a serological test [29]. Thus, 
in this study, we, for the first time, successfully produced VLPs 
containing T. gondii ROP4 protein in which influenza matrix 
M1 is as a core protein. For further studies, the protective im-
munity induced by VLPs immunization is needed as well as 
the evaluation of VLPs as a diagnostic tool for a serological 
test.   
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