• Title/Summary/Keyword: VSM(Vibrating Sample Magnetometer)

Search Result 102, Processing Time 0.028 seconds

Fabrication and Magnetic Properties of Mg and BaFe12O19 Ferromagnetic Composite Powders by Mechanical Alloying (기계적합금화법에 의한 Mg-BaFe12O19 계 강자성 복합분말의 제조 및 자기특성)

  • Lee, Chung-Hyo
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.61-67
    • /
    • 2021
  • Fabrication of a ferromagnetic composite powder for the magnesium and BaFe12O19 system by mechanical alloying (MA) is investigated at room temperature. Mixtures of Mg and BaFe12O19 powders with a weight ratio of Mg:BaFe12O19 = 4:1, 3:2, 2:3 and 1:4 are used. Optimal MA conditions to obtain a ferromagnetic composite with fine microstructure are investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that Mg-BaFe12O19 composite powders in which BaFe12O19 is dispersed in Mg matrix are successfully produced by MA of BaFe12O19 with Mg for 80 min. for all compositions. Magnetization of Mg-BaFe12O19 composite powders gradually increases with increasing the amounts of BaFe12O19, whereas coercive force of MA powders gradually decreases due to the refinement of BaFe12O19 powders with MA time for all compositions. However, it can be seen that the coercivity of Mg-BaFe12O19 MA composite powders with a weight ratio of Mg:BaFe12O19=4:1 and 3:2 for MA 80 min. are still high, with values of 1260 Oe and 1320 Oe compared to that of Mg:BaFe12O19=1:4. This clearly suggests that the refinement of BaFe12O19 powders during MA process for Mg:BaFe12O19=4:1 and 3:2 tends to be suppressed due to ductile Mg powders.

Crystal Structure and Magnetic Properties of Sodium-Iron Phosphates NaFe0.9Mn0.1PO4 Cathode Material

  • Seo, Jae Yeon;Choi, Hyunkyung;Kim, Chul Sung;Lee, Young Bae
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1863-1866
    • /
    • 2018
  • The sodium-iron phosphate maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ was synthesized using the ball mill method. The crystal structure and magnetic properties of the prepared materials were studied using X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and $M{\ddot{o}}ssbauer$ spectroscopy. Structural refinement of maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ was analyzed using the FullProf program. From the XRD patterns, the crystal structure of maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ was found to be orthorhombic with the space group Pmnb. The lattice parameters of maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ are as follows: $a_0=6.866{\AA}$, $b_0=8.988{\AA}$, $c_0=5.047{\AA}$, and $V=311.544{\AA}^3$. Maricite-$NaFePO_4$ has an edge-sharing structure that consists of $FeO_6$ octahedral. Under an applied field of 100 Oe, the temperature dependences of zero-field-cooled (ZFC) and field-cooled (FC) curves were measured from 4.2 to 295 K. $M{\ddot{o}}ssbauer$ spectra were also recorded at various temperatures ranging from 4.2 to 295 K. We thus confirmed that the $N{\acute{e}}el$ temperature of $NaFe_{0.9}Mn_{0.1}PO_4$ ($T_N=14K$) was lower than that of maricite-$NaFePO_4$ ($T_N=15K$).

Application of Nanoparticles for Materials Recognition Using Peptide Phage Display Technique - Part II: Magnetic Bio-panning Using Fe3O4 Nanoparticles (Peptide phage display 기술을 이용한 나노입자의 materials recognition 응용 - Part II: Fe3O4 나노입자를 이용한 magnetic bio-panning)

  • Lee, Chang-Woo;Kim, Min-Jung;Standaert, R.;Kim, Seyeon;Owens, E.;Yan, Jun;Choa, Yong-Ho;Doktycz, M.;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.131-134
    • /
    • 2008
  • The magnetism of$Fe_3O_4$ nanoparticles was applied to magnetic bio-panning process for finding specific sequences against $Fe_3O_4$ crystal phase. Vibrating sample magnetometer (VSM) measurement showed that the coercivity of 30 Oe and the saturation magnetization of 55 emu/g were sufficient in controlling particle movement and magnetizing particles in the media, respectively. This ferrimagnetism of nanoparticles practically enhanced panning efficiency by exaggerating centrifuge step and preventing particle loss. Sequencing results showed that histidine which was commonly found in peptide sequences played an important role in the binding onto $Fe_3O_4$ nanoparticle surface. However, various possible motifs were also observed from several neighboring amino acids of histidine.

Fe-Nanoparticle Amalgamation Using Lagenaria siceraria Leaf Aqueous Extract with Focus on Dye Removal and Antibacterial Efficacy

  • Kirti;Suantak Kamsonlian;Vishnu Agarwal;Ankur Gaur;Jin-Won Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.287-295
    • /
    • 2023
  • Iron nanoparticles (Fe-NPs) were synthesized employing Lagenaria siceraria (LS) leaf aqueous extract as a reducing and capping medium to remove methylene blue (MB) dye and have antibacterial properties against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus). The formation of LS-Fe-NPs (Lagenaria-siceraria-iron-nanoparticles) was confirmed by a change in color from pale yellow to dark brown. Characterization techniques, such as particle size analysis (PSA), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), were employed to prove nano spherical particles of size range between 80-100 nm. Phytochemicals and the presence of iron in LS-Fe-NPs nanoparticles were proved by UV-visible spectrophotometry. Further, Fourier transform infrared spectroscopy (FTIR) analysis results confirmed the existence of bioactive molecules in the plants. The magnetic property was analyzed using a vibrating sample magnetometer (VSM), which displayed that the synthesized nanoparticles were superparamagnetic and exhibiting a saturation magnetization of 12.5 emu/g. Synthesized magnetic nanoparticles were used in methylene blue (MB) dye removal through adsorption. About 83% of 100 mg/L MB dye was removed within 120 min at pH 6 with a maximum adsorption capacity of 246.8 mg/g. Antibacterial efficacy of LS-Fe-NPs was screened against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus), respectively, and found that LS-Fe-NPs were effective against Staphylococcus aureus.

Synthesis and Characterization of Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticles (Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticle의 합성과 성질에 관한 연구)

  • Yoo, Jeong-Yeol;Lee, Young-Ki;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.397-406
    • /
    • 2015
  • ZnO, II-VI group inorganic compound semi-conductor, has been receiving much attention due to its wide applications in various fields. Since the ZnO has 3.37 eV of a wide band gap and 60 meV of big excitation binding energy, it is well-known material for various uses such the optical property, a semi-conductor, magnetism, antibiosis, photocatalyst, etc. When applied in the field of photocatalyst, many research studies have been actively conducted regarding magnetic materials and the core-shell structure to take on the need of recycling used materials. In this paper, magnetic core-shell ZnFe2O4@SiO2 nanoparticles (NPs) have been successfully synthesized through three steps. In order to analyze the structural characteristics of the synthesized substances, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR) were used. The spinel structure of ZnFe2O4 and the wurtzite structure of ZnO were confirmed by XRD, and ZnO production rate was confirmed through the analysis of different concentrations of the precursors. The surface change of the synthesized materials was confirmed by SEM. The formation of SiO2 layer and the synthesis of ZnFe2O4@ZnO@SiO2 NPs were finally verified through the bond of Fe-O, Zn-O and Si-O-Si by FT-IR. The magnetic property of the synthesized materials was analyzed through the vibrating sample magnetometer (VSM). The increase and decrease in the magnetism were respectively confirmed by the results of the formed ZnO and SiO2 layer. The photocatalysis effect of the synthesized ZnFe2O4 @ZnO@SiO2 NPs was experimented in a black box (dark room) using methylene blue (MB) under UV irradiation.

Study on Synthesis and Characterization of Magnetic ZnFe2O4@SnO2@TiO2 Core-shell Nanoparticles (자성을 가진 ZnFe2O4@SnO2@TiO2 Core-Shell Nanoparticles의 합성과 특성에 관한 연구)

  • Yoo, Jeong-yeol;Park, Seon-A;Jung, Woon-Ho;Park, Seong-Min;Tae, Gun-Sik;Kim, Jong-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.710-715
    • /
    • 2018
  • In this study, $ZnFe_2O_4@SnO_2@TiO_2$ core-shell nanoparticles (NPs), a photocatalytic material with magnetic properties, were synthesized through a three-step process. Structural properties were investigated using X-ray diffraction (XRD) analysis. It was confirmed that $ZnFe_2O_4$ of the spinel, $SnO_2$ of the tetragonal and $TiO_2$ of the anatase structure were synthesized. The magnetic properties of synthesized materials were studied by a vibrating sample magnetometer (VSM). The saturation magnetization value of $ZnFe_2O_4$, a core material, was confirmed at 33.084 emu/g. As a result of the formation of $SnO_2$ and $TiO_2$ layers, the magnetism due to the increase in thickness was reduced by 33% and 40%, respectively, but sufficient magnetic properties were reserved. The photocatalytic efficiency of synthesized materials was measured using methylene blue (MB). The efficiency of the core material was about 4.2%, and as a result of the formation of $SnO_2$ and $TiO_2$ shell, it increased to 73% and 96%, respectively while maintaining a high photocatalytic efficiency. In addition, the antibacterial activity was validated via the inhibition zone by using E. Coli and S. Aureus. The formation of shells resulted in a wider inhibition zone, which is in good agreement with photocatalytic efficiency measurements.

Fabrication and Magnetic Properties of BaFe12-2xCoxTixO19 Powders (BaFe12-2xCoxTixO19 분말의 제조 및 자기특성 연구)

  • An, Sung-Yong;Shim, In-Bo;Kim, Chul-Sung;Lee, Seung-Wha
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.1
    • /
    • pp.21-28
    • /
    • 2003
  • M-type hexagonal BaF $e_{12-2x}$ $Co_{x}$ $Ti_{x}$ $O_{19}$ (0$\leq$x$\leq$1.0) ferrite powders prepared by a sol-gel method. The crystallographic and magnetic properties were characterized with a x-ray diffraction (XRD), thermogravimetry (TG), differential thermal analysis (DIA), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), and Mossbauer spectroscopy. The result of XRD measurements show that the a and c lattice parameters increase with increasing x from $\alpha$=5.882 and c=23.215 $\AA$ for $\chi$=0.0, to $\alpha$=5.895 and c=23.295 $\AA$ for $\chi$=1.0. From the Mossbauer results, the $Co^{2+}$- $Ti^{4+}$ site occupancies have been affected the changes in the magnetization and in the coercivity. The Curie temperature linearly decreases with increasing $Co^{2+}$- $Ti^{4+}$ concentration x.

Crystall ographic and Magnetic Properties of Ultrafine $CoFe_{1.9}Bi_{0.1}O_4$ Grown by Using a Sol-Gel Method (Sol-gel법에 의한 초미세 분말 $CoFe_{1.9}Bi_{0.1}O_4$의 결정학적 및 자기적 성질 연구)

  • 김우철;김삼진;김철성;이승화
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.4
    • /
    • pp.177-183
    • /
    • 1999
  • Ultrafine $CoFe_{1.9}Bi_{0.1}O_4$ particles were fabricated by using a sol-gel method and their magnetic and structural properties were investigated with an x-ray diffractometer (XRD), a vibrating sample magnetometer (VSM), and a M$\"{o}$ssbauer spectrometer. The result of x-ray diffraction and M$\"{o}$ssbauer spectroscopy showed that the powders fired at and above 523 K had only cubic spinel structures. M$\"{o}$ssbauer spectra measurements showed that the powders annealed at 523,723 and 823 K possessed ferrimagnetic nature and paramagnetic nature due to superparamagnetism, simultaneously at room temperature and the powders annealed at and above 923 K behaved ferrimagnetically. In the case of the powder annealed at 923 K, the lattice constant was $a_0=8.398$\pm$0.005{\AA}$ and the hyperfine fields were $H_{hf}(A)=479kOe,\; H_{hf}(B)=502kOe$. The isomer shifts indicate that the iron ions are ferric at tetrahedral[A] and octahedral sites [B], respectively. The magnetization as a function of annealing temperature increased as increasing annealing temperature. The largest coercivity values were $H_C=1368\;Oe$ AT 923 K annealing temperature. In the case of the powder annealed at 1123 K, the magnetization value was $M_S=75\;emu/g$ and this value was similler to that of $CoFe_2O_4$.Fe_2O_4$.

  • PDF

The Multiferroic Properties Study of YMn2-xFexO5 (x=0.00, 0.01) by Neutron Diffraction (고 분해능 중성자 회절 실험에 의한 YMn2-xFexO5 (x = 0.00, 0.01)의 다강체 특성 연구)

  • Kim, Dong-Hyun;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.5
    • /
    • pp.183-187
    • /
    • 2007
  • Compounds of multiferroic materials $YMn_{2-x}Fe_xO_5$ (x = 0.00, 0.01) were prepared using the sol-gel method. The crystallographic, magnetic and electric properties are studied using x-ray diffraction (XRD), neutron diffraction, vibrating sample magnetometer (VSM) and physical property measurement system (PPMS). The crystalline structure of $YMn_2O_5$ was found to be orthorhombic (Pbam) at room temperature. The lattice constants of $YMn_2O_5$ were determined to be $a_0=7.275\;{\AA},\;b_0=8.487\;{\AA},\;c_0=5.674\;{\AA}$. The lattice constants not changed with Fe concentrations. Our data demonstrate the correlation of magnetic and electric properties in $YMn_2O_5$ materials.

Effects of Metal Ions Mole Ratio, pH and Heat Treatment Condition on the Magnetic Properties and Formation of Co-precipitated M-type Barium Ferrite Powders (공침법으로 합성한 바륨 페라이트(BaM)의 형성과 자기적 성질에 미치는 금속이온 몰 비 및 pH와 열처리 조건의 영향)

  • Baek, In-Seung;Nam, In-Tak
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.6
    • /
    • pp.209-215
    • /
    • 2009
  • M-type barium ferrite (BaFe12O19) powders were synthesized through the co-precipitation method. Starting material composition $Fe^{3+}:\;Ba^{2+}$ mole ratio was fixed as 8 and the relative amount of $Fe^{3+}$ and $Ba^{2+}$ was controlled. Structure and magnetic properties and powder morphology were investigated using XRD, SEM, VSM. Powder showing high coercivity and small magnetization was obtained at pH8 and $Fe_{3+}:\;Ba_{2+}$ of 12 : 1.5. Small magnetization value was originated from the existence of ${\alpha}-Fe_2O_3$. Single-phase Mtype barium ferrite were obtained regardless of the heat treatment condition and the amount of $Fe_{3+}\;and\;Ba_{2+}$ at pH$\approx$10. The largest value of magnetization (55.7 emu/g) under investigation were obtained when $Fe_{3+}:\;Ba_{2+}$ of 13.6 : 1.7 and furnace cooled powder in $O_2$. Particle size of powder was in the range of 50~200 nm.