• Title/Summary/Keyword: VOF model

Search Result 169, Processing Time 0.028 seconds

Effect of bow hull forms on the resistance performance in calm water and waves for 66k DWT bulk carrier

  • Lee, Cheol-Min;Yu, Jin-Won;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.723-735
    • /
    • 2019
  • This paper employs computational tools to investigate the cause of resistance reductions in calm water and waves of the sharp bow form compared to the blunt bow in 66,000 DWT bulk carriers. A more slender shape at the fore-shoulder without a bulbous bow is a prominent feature of the sharp bow. The blunt bow incorporates a bulbous shape. A two-phase unsteady Reynolds averaged Navier-Stokes equations have been solved; and a realizable k-ε model has been applied for the turbulent closure. The free-surface is obtained by solving a VOF equation. The computational results have been validated with model tests carried out at a towing tank. The pressure component of resistance in the sharp bow is reduced by 8.9% in calm water, and 6.4-12.7% in regular head waves. The frictional components of resistance in the sharp and blunt bows are largely the same.

A Study on Flow and Creation and Dissipation of Vorticity around Rectangular Floating Breakwater (부방파제의 유동과 와의 생성 및 소멸에 관한 연구)

  • Yoon, Jung-Sung;Kim, Myoung-Kyu;Jung, Kwang-Hyo;Kim, Ga-Ya
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.24-33
    • /
    • 2008
  • In this study, flow and creation and dissipation of vorticity around rectangular floating breakwater is investigated both experimentally and numerically. The PIV system(Particle image velocimetry) is employed to obtain the velocity field in the vorticity of rectangular structure. The numerical model, combined with ${\kappa}-{\varepsilon}$ turbulence model and the VOF method based on RANS equation, is used to analyze the turbulence structure. In the results of this study, the vorticity is found around conner of rectangular structure at all time domain, and creation and dissipation of vorticity are closely related to wave period. Separation points of phase of vortex due to flow separation for longer period waves are faster then for shorter period waves.

An Analysis of Flashing Jet Behavior of Pressurized Water (물제트의 노즐 입구온도변화에 따른 증발특성 해석)

  • KIM, BOOSANG;KIM, HAKDEOK;LIM, HEECHANG;SONG, JUHUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.585-592
    • /
    • 2019
  • In this study, a flashing boiling phenomenon of pressurized water jet was numerically studied and validated against an experimental data in the literatures. The volume of fluid (VOF) technique was used to consider two-phase behavior of water, while the homogeneous relaxation model (HRM) model was used to provide the velocity of phase change. During the flashing boiling through a nozzle, a mach disk was observed near nozzle exit because of pressure drop resulting from two-phase under-expansion. The flashing jet structure, local distributions of temperature/vapor volume fraction/velocity, and position of the mach disk were examined as nozzle inlet temperature changed.

Numerical study of oxygen transport characteristics in lead-bismuth eutectic for gas-phase oxygen control

  • Wang, Chenglong;Zhang, Yan;Zhang, Dalin;Lan, Zhike;Tian, Wenxi;Su, Guanghui;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2221-2228
    • /
    • 2021
  • One-dimensional oxygen transport relation is indispensable to study the oxygen distribution in the LBE-cooled system with an oxygen control device. In this paper, a numerical research is carried out to study the oxygen transport characteristics in a gas-phase oxygen control device, including the static case and dynamic case. The model of static oxygen control is based on the two-phase VOF model and the results agree well with the theoretical expectation. The model of dynamic oxygen control is simplified and the gas-liquid interface is treated as a free surface boundary with a constant oxygen concentration. The influences of the inlet and interface oxygen concentration, mass flow rate, temperature, and the inlet pipe location on the mass transfer characteristics are discussed. Based on the results, an oxygen mass transport relation considering the temperature dependence and velocity dependence separately is obtained. The relation can be used in a one-dimensional system analysis code to predict the oxygen provided by the oxygen control device, which is an important part of the integral oxygen mass transfer models.

Numerical investigation on combined wave damping effect of pneumatic breakwater and submerged breakwater

  • Wang, Yanxu;Yin, Zegao;Liu, Yong;Yu, Ning;Zou, Wei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.314-328
    • /
    • 2019
  • This paper attempts to combine the pneumatic breakwater and submerged breakwater to increase the effectiveness of wave damping for long-period waves. A series of physical experiments concerning pneumatic breakwater, submerged breakwater and their joint breakwater was conducted and used to validate a mathematical model based on Reynolds-averaged Navier-Stokes equations, the RNG $k-{\varepsilon}$ turbulence model and the VOF method. In addition, the mathematical model was used to investigate the wave transmission coefficients of three breakwaters. The nonlinear wave propagation behaviors and the energy transfer from lower frequencies to higher frequencies after the submerged breakwater were investigated in detail. Furthermore, an optimal arrangement between pneumatic breakwater and submerged breakwater was obtained for damping longer-period waves that cannot be damped effectively by the pneumatic breakwater alone. In addition, the reason for the appearance of the combination effect is that part of the energy of the transmitted waves over the submerged breakwater transfers to shorter-period waves. Finally, the impact of the joint breakwater on the wave field during wave propagation process was investigated.

Parameter Study of Boiling Model for CFD Simulation of Multiphase-Thermal Flow in a Pipe

  • Chung, Soh-Myung;Seo, Yong-Seok;Jeon, Gyu-Mok;Kim, Jae-Won;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.50-58
    • /
    • 2021
  • The demand for eco-friendly energy is expected to increase due to the recently strengthened environmental regulations. In particular, the flow inside the pipe used in a cargo handling system (CHS) or fuel gas supply system (FGSS) of hydrogen transport ships and hydrogen-powered ships exhibits a very complex pattern of multiphase-thermal flow, including the boiling phenomenon and high accuracy analysis is required concerning safety. In this study, a feasibility study applying the boiling model was conducted to analyze the multiphase-thermal flow in the pipe considering the phase change. Two types of boiling models were employed and compared to implement the subcooled boiling phenomenon in nucleate boiling numerically. One was the "Rohsenow boiling model", which is the most commonly used one among the VOF (Volume-of-Fluid) boiling models under the Eulerian-Eulerian framework. The other was the "wall boiling model", which is suitable for nucleate boiling among the Eulerian multiphase models. Moreover, a comparative study was conducted by combining the nucleate site density and bubble departure diameter model that could influence the accuracy of the wall boiling model. A comparison of the Rohsenow boiling and the wall boiling models showed that the wall boiling model relatively well represented the process of bubble formation and development, even though more computation time was consumed. Among the combination of models used in the wall boiling model, the simulation results were affected significantly by the bubble departure diameter model, which had a very close relationship with the grid size. The present results are expected to provide useful information for identifying the characteristics of various parameters of the boiling model used in CFD simulations of multiphase-thermalflow, including phase change and selecting the appropriate parameters.

Analysis of free surface motions in the hoot Pool of KALIMER (KALIMER 고온풀 자유액면 거동 해석)

  • Kim Seong-O;Eoh Jae-Hyuk;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.44-52
    • /
    • 2002
  • An analytic methodology was developed for free surface motions between liquid metal coolant and cover gas in order to calculate the phenomena of gas entrainment in hot pool surface through IHX EMP and reactor core. The methodology was setup by applying the first order VOF convection model to CFX4 general purpose fluid dynamics analysis code. The methodology was validated by applying it to an experimental apparatus designed for free surface motions of KALIMER reactor. The distributions of free surface calculated by the present methodology were almost coincident with the experimental data. The developed methodology was applied to the KALIMER reactor of full power operating condition. The shapes of the free surface were nearly uniform. From the results, it was found that the altitude of the free surface from the IHX inlet nozzle of KALIMER reactor is high enough not to affect to free surface motions of generating gas bubbles from the turbulent shear flows such as hydraulic jump and water falls.

A Study of a Simultaneous Filling and Solidification During Casting Process (충전과 상변화 현상을 포함한 주조과정에 대한 연구)

  • Im, lk-Tae;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.987-996
    • /
    • 1999
  • An algorithm for modeling the filling of metal into a mold and solidification has been developed. This algorithm uses the implicit VOF method for a filling and a general implicit source-based method for solidification. The model for simultaneous filling and solidification is applied to the two-dimensional filling and solidification of a square cavity. The effects of the wall temperature and gate position on the solidification are examined. The mixed natural convection flow and residual flow resulting from the completion of a filling are included in this study to investigate the coupled effects of the filling and natural convection on solidification. Two different filling configurations (assisting flow and opposite flow due to the gate position) are analysed to study the effects of residual flow on solidification. The results clearly show the necessity to carry out a coupled filling and solidification analysis including the effect of natural convection.

Simulations of pendant drop formation of a viscoelastic liquid

  • Davidson Malcolm R.;Harvie Dalton J.E.;Cooper-White Justin J.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.41-49
    • /
    • 2006
  • A modified Volume-of-Fluid (VOF) numerical method is used to predict the dynamics of a liquid drop of a low viscosity dilute polymer solution, forming in air from a circular nozzle. Viscoelastic effects are rep-resented using an Oldroyd-B model. Predicted drop shapes are compared with experimental observations. The main features, including the timing of the shape evolution and the 'bead-on-a-string' effect, are well reproduced by the simulations. The results confirm published conclusions of the third author, that the deformation is effectively Newtonian until near the time of Newtonian pinch-off and that the elastic stress becomes large in the pinch region due to the higher extensional flow there.

2D Computational Analysis of Overtopping Wave Energy Convertor

  • Liu, Zhen;Hyun, Beom-Soo;Jin, Ji-Yuan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2009
  • An Overtopping Wave Energy Convertor (OWEC) is an offshore wave energy convertor used for collecting overtopping waves and converting the water pressure head into electric power through hydro turbines installed in a vertical duct affixed to the sea bed. A numerical wave tank based on the commercial computational fluid dynamics code Fluent is established for the corresponding analysis. The Reynolds Averaged Navier-Stokes equation and two-phase VOF model are utilized to generate the 2D numerical linear propagating waves, which are validated by the overtopping experiment results. Calculations are made for several incident wave conditions and shape parameters for the overtopping device. Both the incident wave periods and heights have evident effects on the overtopping performance of the OWEC device. The computational analysis demonstrates that the present overtopping device is more compatible with longer incident wave periods.