• Title/Summary/Keyword: VOF방법

Search Result 62, Processing Time 0.02 seconds

An Interface Tracking Scheme based on VOF Coupled with Level Set Method (Level Set 방법과 결합된 VOF 기반의 경계면 추적법)

  • Suh, Young-Ho;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.113-118
    • /
    • 2001
  • We present a new interface tracking method for computing two-phase flow. This method is based on VOF method coupled with Level set method. The method is verified to calculate an interfacial curvature accurately as well as to achieve volume conservation during the whole computation period. We apply the present method to calculate a falling drop. The calculated shape and terminal velocity of the falling drop showed good agreement with the data reported in the literature. Also, the present method was proven to be applicable to drop-wall collision phenomenon.

  • PDF

Two Dimensional Numerical Simulation of Liquid Sloshing (액체 슬라상에 관한 2차원 수치 시뮬레이션)

  • Kang, Sin Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.78-82
    • /
    • 1988
  • 자유표면 유동을 시뮬레이션할 수 있는 수치 알고리듬 중 가장 최근에 개발된 volume of fluid (VOF) 방법을 이용하여 뚜껑이 닫힌 사각 컨테이너 속의 슬라싱을 시뮬레이션 하였다. 그 결과 유동이 작은 경우에는 알고리듬이 불안정하게 되어 장기간 시뮬레이션을 어렵게 하는 문제점이 발견되었다. 이 문제점을 해결하기 위해 VOF 알고리듬이 불안정하게 되어 장기간 시뮬레이션을 어렵게하는 문제점이 발견되었다. 이 문제점을 해결하기 위해 VOF 알고리듬 중 유량이동 알고리듬을 수정하여 원래의 알고리듬으로 시뮬레이션한 결과와 비교 분석하였다

  • PDF

A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface(I)-New Free Surface Tracking Algorithm and Its Verification- (자유 표면이 존재하는 유체 유동 해석을 위한 VOF방법의 기반의 새로운 수치 기법(I)-새로운 자유 표면 추적 알고리즘 및 검증-)

  • Kim, Min-Su;Sin, Su-Ho;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1555-1569
    • /
    • 2000
  • Numerical simulation of fluid flow with moving free surface has been carried out. For the free surface flow, a VOF(Volume of Fluid)-based algorithm utilizing a fixed grid system has been investigated. In order to reduce numerical smearing at the free surface represented on a fixed grid system, a new free surface tracking algorithm based on the donor-acceptor scheme has been presented. Novel features of the proposed algorithm are characterized as two numerical tools; the orientation vector to represent the free surface orientation in each cell and the baby-cell to determine the fluid volume flux at each cell boundary. The proposed algorithm can be easily implemented in any irregular non-uniform grid systems that are usual in finite element method (FEM). Moreover, the proposed algorithm can be extended and applied to the 3-D free surface flow problem without additional efforts. For computation of unsteady incompressible flow, a finite element approximation based on the explicit fractional step method has been adopted. In addition, the SUPG(streamline upwind/Petrov-Galerkin) method has been implemented to deal with convection dominated flows. Combination of the proposed free surface tracking scheme and explicit fractional step formulation resulted in an efficient solution algorithm. Validity of the present solution algorithm was demonstrated from its application to the broken dam and the solitary wave propagation problems.

CBT Combustion Precise Modeling and Analysis Using VOF and FSI Methods (VOF와 FSI 방법을 적용한 CBT 연소 정밀 모델링 및 해석)

  • Jeongseok Kang;Jonggeun Park;Hong-Gye Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.35-43
    • /
    • 2022
  • Precise modeling and analysis of closed bomb test(CBT) combustion using solid propellants was performed. The fluid structure interaction(FSI) method was implemented to analyze the gas and solid phases at the same time. The Eulerian analysis method was applied for the gas phase and grain combustion, and the Lagrangian analysis method was implemented for the grain movement. The interaction between the solid phase grains and the combustion gas was fully coupled through the source term. The volume of fluid(VOF) method was used to simulate the burning distance of the grain and the movement of the combustion surface. The force acting on the grain was comprised of the pressure and gravity acting on the grain burning surface, and the grain burning rate and grain movement speed were considered in the velocity term of the VOF. The combustion analysis was performed for both one and three grains, and fairly compared with the experiments. The acoustic field during grain combustion due to pressure fluctuations was also analyzed.

The Characteristics of Wave Energy Variations by Impermeable Submerged Breakwater Using VOF Method in Irregular Wave Fields (VOF 법에 의한 불규칙파동장에 있어서 불투과잠제에 의한 파랑에너지 변형특성)

  • 허동수;김도삼
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.207-213
    • /
    • 2003
  • This study is to numerically investigate the characteristics of wave energy variations propagating over impermeable submerged breakwaters with irregular waves. Two-dimensional numerical wave flume based on the VOF method was used. VOF method is the most efficient capable of simulating free surfaces including wave breaking. From the computed frequency spectrum results, wave breaking play important role in ability of the submerged breakwaters to dissipate incident wave energy. In case of occurring wave breaking, our analysis shows that wave energy moves to short wave period on one-row impermeable submerged breakwater's lee side and is widely distributed not having peak period on two- row impermeable submerged breakwater's lee side.

Dynamic Analysis of Metal Transfer using VOF Method in GMAW (I) - Globular and Spray Transfer Modes (VOF 방법을 이용한 GMA 용접의 금속 이행에 관한 동적 해석 (I) - 입상 용적과 스프레이 이행 모드의 해석 -)

  • 최상균;유중돈;김용석
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.36-46
    • /
    • 1997
  • Dynamics of molten drop detachment in the Gas Metal Arc (GMA) welding is investigated using the Volume of Fluid(VOF) method. The electromagnetic effects are included in the formulation of the VOF method which has been widely used to analyze the dynamics of the fluid having a free surface. The molten drop geometry, pressure and velocity profiles within the drop are calculated numerically in the cases of globular and spray transfer modes. It appears that the velocity and current distribution affect metal detachment. It is found that the taper is formed and maintained during the spray transfer by the electromagnetic force. Predicted results show reasonably good agreement with the available experimental data which validates the application of the VOF method to metal transfer analysis.

  • PDF

A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface(II)-New Free Surface Tracking Algorithm and Its Verification- (자유 표면이 존재하는 유체 유동 해석을 위한 VOF 방법 기반의 새로운 수치 기법(II)-캐비터 충전 문제와 슬로싱 문제에의 응용-)

  • Kim, Min-Su;Park, Jong-Seon;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1570-1579
    • /
    • 2000
  • Finite element analysis of fluid flow with moving free surface has been carried out in two and tree dimensions. The new VOF-based numerical algorithm that has been proposed by the present authors was applied to several 2-D and 3-D free surface flow problems. The proposed free surface tracking scheme is based on two numerical tools that have been newly introduced by the present authots; the orientation vector to represent the free surface orientation in each cell and the baby-cell to determine the fluid volume flux at each cell boundary. The proposed numerical algorithm has been applied to 2-D and 3-D cavity filling and sloshing problems, which demonstrated versatility and effectiveness of the new free surface tracking scheme as well as the overall solution procedure. The proposed numerical algorithm resolved successfully the interacting free surface with each other. The simulated results demonstrated the applicability of proposed numerical algorithm to the practical problems of large free surface motion. Also, it has been demonstrated that the proposed free surface tracking scheme can be easily implemented in any irregular non-uniform grid systems and can be extended to the 3-D free surface flow problem without additional efforts.

Computational Fluid Dynamics Study on Two-Dimensional Sloshing in Rectangular Tank (사각형 탱크 내에서의 2차원 슬로싱에 대한 전산유체 역학적 연구)

  • Kwack, Young-Kyun;Ko, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1142-1149
    • /
    • 2003
  • The present study describes a numerical analysis for simulation of the sloshing of flows with free-surface which contained in a rectangular tank moving in harmonic or pitching motion. The VOF function, representing the volume fraction of a cell occupied by the fluid, is calculated for each cells, which gives the location of the free-surface filling any some fraction of cells with fluid. The time-dependent changes of free-surface height are used for visualization subject to several conditions such as fluid height, horizontal acceleration, sinusoidal motion, and viscosity. The free-surface heights were used for comparing wall-force, which is caused by sloshing of flows. Damping effects by baffles were extensively investigated for various conditions in terms of baffle shape and position.

Finite element analysis of flow with moving free surface by volume of fluid method (VOF 방법에 의한 이동하는 자유표면이 존재하는 유동의 유한요소 해석)

  • Sin, Su-Ho;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1230-1243
    • /
    • 1997
  • A numerical technique for simulating incompressible viscous flow with free surface is presented. The flow field is obtained by penalty finite element formulation. In this work, a modified volume of fluid (VOF) method which is compatible with 4-node element is proposed to track the moving free surface. This scheme can be applied to irregular mesh system, and can be easily extended to three dimensional geometries. Numerical analyses were done for two benchmark examples, namely the broken dam problem and the solitary wave propagation problem. The numerical results were in close agreement with the existing data. Illustrative examples were studied to show the effectiveness of the proposed numerical scheme.

Droplet Transport Mechanism on Horizontal Hydrophilic/Hydrophobic Surfaces (친수성/소수성 수평 표면상에서의 액적이송 메커니즘)

  • Myong, Hyon Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.513-523
    • /
    • 2014
  • A fluid transport technique is a key issue for the development of microfluidic systems. In this study, the movement of a droplet on horizontal hydrophilic/hydrophobic surfaces, which is a new concept to transport droplets without external power sources that was recently proposed by the author, was simulated using an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The droplet transport mechanism is examined through numerical results that include velocity vectors, pressure contours, and total kinetic energy inside and around the droplet.