DOI QR코드

DOI QR Code

A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface(I)-New Free Surface Tracking Algorithm and Its Verification-

자유 표면이 존재하는 유체 유동 해석을 위한 VOF방법의 기반의 새로운 수치 기법(I)-새로운 자유 표면 추적 알고리즘 및 검증-

  • Kim, Min-Su (Central Research Center, Samsung Electronics Corporation) ;
  • Sin, Su-Ho (Central Research Center, Samsung Electronics Corporation) ;
  • Lee, U-Il
  • Published : 2000.12.01

Abstract

Numerical simulation of fluid flow with moving free surface has been carried out. For the free surface flow, a VOF(Volume of Fluid)-based algorithm utilizing a fixed grid system has been investigated. In order to reduce numerical smearing at the free surface represented on a fixed grid system, a new free surface tracking algorithm based on the donor-acceptor scheme has been presented. Novel features of the proposed algorithm are characterized as two numerical tools; the orientation vector to represent the free surface orientation in each cell and the baby-cell to determine the fluid volume flux at each cell boundary. The proposed algorithm can be easily implemented in any irregular non-uniform grid systems that are usual in finite element method (FEM). Moreover, the proposed algorithm can be extended and applied to the 3-D free surface flow problem without additional efforts. For computation of unsteady incompressible flow, a finite element approximation based on the explicit fractional step method has been adopted. In addition, the SUPG(streamline upwind/Petrov-Galerkin) method has been implemented to deal with convection dominated flows. Combination of the proposed free surface tracking scheme and explicit fractional step formulation resulted in an efficient solution algorithm. Validity of the present solution algorithm was demonstrated from its application to the broken dam and the solitary wave propagation problems.

Keywords

References

  1. Floryan, J. M. and Rasmussen, H., 1989, 'Numerical Methods for Viscous Flows with Moving Boundaries,' Appl. Mech. Rev., Vol. 42, No. 12, pp. 323-341
  2. Hirt, C. W., Cook, J. L. and Butler, T. D., 1970, 'A Lagrangian Method for Calculating the Dynamics of an Incompressible fluid with Free Surface,' J. Comput. Phys., Vol. 5, pp. 103-124 https://doi.org/10.1016/0021-9991(70)90055-0
  3. Ramaswamy, B., Kawahara, M. and Nakayama, T., 1986, 'Lagrangian Finite Element Method for the Analysis of Two-Dimensional sloshing Problemsm,' Int. J. Numer. Methods Fluids, Vol. 6,pp. 659-670 https://doi.org/10.1002/fld.1650060907
  4. Okamoto, T. and Kawahara, M., 1990, 'Two Dimensional Sloshing Analysis by Lagrangian Finite Element Method,' Int. J. Numer. Methods Fluids, Vol. 11,pp.453-477 https://doi.org/10.1002/fld.1650110502
  5. Ramaswamy, B. and Kawahara, M., 1987, 'Lagrangian Finite Element Analysis applied to Viscous Free Surface Fluid Flow,' Int. J. Numer. Methods Fluids, Vol.7,pp. 953-984 https://doi.org/10.1002/fld.1650070906
  6. Hirt, C. W., Amsden, A. A. and Cook, J. L., 1974, 'An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds,' J. Comput. Phys., Vol. 14,pp.227-253 https://doi.org/10.1016/0021-9991(74)90051-5
  7. Ramaswamy, B. and Kawahara, M., 1987, 'Arbitrary Lagrangian-Eulerian Finite Element Mothod for Unsteady, Convective, Incompressible Viscous Free Surface Fluid Flow,' Int. J. Numer. Methods Fluids, Vol. 7, pp. 1053-1075 https://doi.org/10.1002/fld.1650071005
  8. Huerta, A. and Liu, W. K., 1988, 'Viscous flow with Large Free Surface Motion,' Comput. Methods Appl. Mech. Engrg., Vol. 69, pp. 277-324 https://doi.org/10.1016/0045-7825(88)90044-8
  9. 최형권, 1996, '분리유한요소법을 이용한 Navier-Stokes 방정식의 해법에 대한 연구,' 공학박사 학위논문, 서울대학교
  10. Harlow, F. H. and Welch, J. E., 1965, 'Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface,' Physics of Fluids, Vol. 8, No. 12, pp. 2182-2189 https://doi.org/10.1063/1.1761178
  11. Chan, R. K. -C. and Street, R. L., 1970, 'A Computer Study of Finite-Amplitude Water Waves,' J. Comput. Phys., Vol. 6,pp.68-94 https://doi.org/10.1016/0021-9991(70)90005-7
  12. Amsden, A. A. and Harlow, F. H., 1970, 'The SMAC Method: A Numerical Technique for Calculating Incompressible Fluid Flow, Los Alamos Scientific Laboratory Report, LA-4370
  13. Hirt, C. W. and Cook, J. L., 1972, 'Calculating Three-Dimensional Flows around Structures and over Rough Terrain,' J. Comput. Phys., Vol. 10, pp. 324-340 https://doi.org/10.1016/0021-9991(72)90070-8
  14. Ramshaw, J. D. and Trapp, J. A., 1976, 'A Numerical Technique for Low-Speed Homogeneous Two-Phase Flow with Sharp Interface,' J. Comput. Phys., Vol. 21,pp. 438-453 https://doi.org/10.1016/0021-9991(76)90039-5
  15. Nakayama, T. and Mori, M., 1996, 'An Eulerian finite Element Method for Time-Dependent Free Surface Problems in Hydrodynamics,' Int. J. Numer. Methods fluids, Vol. 22,pp. 175-194 https://doi.org/10.1002/(SICI)1097-0363(19960215)22:3<175::AID-FLD352>3.0.CO;2-F
  16. Hirt, C. W. and Nichols, B. D., 1981, 'Volume of Fluid(VOF) Method for the Dynamics of Free Boundaries,' J. Comput. Phys., Vol. 39,pp. 201-225 https://doi.org/10.1016/0021-9991(81)90145-5
  17. Nicholas, B. D., Hirt, C. W. and Hotchkiss, R. S., 1980, 'SOLA-VOF: A Soultion Algorithm for Taransient Fluid Flow With Multiple Free Boundaries,' Los Alamos Scientific Laboratory Report, LA-8355
  18. Partom, I. S., 1987, 'Application of the VOF Method to the Sloshing of a Fluid in a Patially filled Cylindrical Container,' Int. J. Numer. methods Fluids, Vol. 7,pp. 535-550 https://doi.org/10.1002/fld.1650070602
  19. Jun, L., and Spalding, D. B., 1988, 'Numerical Simulation of Flows with Moving Interfaces,' PhysicoChemical Hydrodynamics, Vol. 10, No. 5/6,pp. 625-637
  20. Dhatt, G., Gao, D. M. and Cheikh, A. B., 1990, 'A Finite Element Simulation of Metal flow in Moulds,' Int. J. Numer. Methods Engrg., Vol. 30,pp. 821-831 https://doi.org/10.1002/nme.1620300416
  21. Chan, K. S., Pericleous, K. and Cross, M., 1991, 'Numerical Simulation of Flows Encountered during Mold-Filling,' Appl. Math. Modelling, Vol. 15, pp. 624-631
  22. Minaie, B., Stelson, K. A. and Voller, V. R., 1991,'Analysis of Flow Patterns and Solidification Phenomena in the Die Casting Process,' J. Engrg. Materials Technology, Vol. 113.pp. 296-302
  23. Ashgriz, N. and Poo, J. Y., 1991, 'FLAIR: flux Line-Segment Model for Advection and Interface Reconstruction,' J. Comput. Phys., Vol. 93, pp. 449-468 https://doi.org/10.1016/0021-9991(91)90194-P
  24. Usmani, A. S., Cross, J. T. and Lewis, R. W., 1992, 'A Finite Element Model for the Simulations of Mould Filling in Metal Casting and the Associated Heat Transfer Int. J. Numer. Methods Engrg., Vol. 35,pp. 787-806 https://doi.org/10.1002/nme.1620350410
  25. Rice, A. B., 1993, 'Numerical Simulation of Mold Filling Processes,' Ph.D. Thesis, Purdue University
  26. Swaminathan, C. R. and Voller, V. R., 1994. 'A Time-Implicit Filling Algorithm,' Appl. Math. Modelling, Vol. 18, pp. 101-108 https://doi.org/10.1016/0307-904X(94)90165-1
  27. Kothe, D. B., Mjolsness, R. C. and Torrey, M. D., 1994, 'RIPPLE: A Computer Program for Incompressible Flows with Free Surface,' Los Alamos National Laboratory Report, LA-12007-MS
  28. Lewis, R. W., Usmani, A. S. and Cross, J. T., 1995, 'Efficient Mould Filling simulation in Casings by an Explicit finite Element Method,' Int. J. Numer. methods Fluids, Vol. 20,pp. 493-506 https://doi.org/10.1002/fld.1650200606
  29. Mashayek, F. and Ashgriz, N., 1995, 'A Hybrid finite-Element-Volume-of-Fluid Method for Simulating Free Surface Flows and Interfaces,' Int. J. Numer. methods Fluids, Vol. 20,pp. 1363-1380 https://doi.org/10.1002/fld.1650201205
  30. Rudman, M., 1997, 'Volume-Tracking Methods for Interfacial Flow Calculations,' Int. J. Numer. Methods Fluids, Vol. 24,pp. 671-691 https://doi.org/10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9
  31. Rider, W. J. and Kothe, D. B., 1998, 'Reconstructing Volume Tracking,' J. Comput. Phys., Vol. 141, pp. 112-152 https://doi.org/10.1006/jcph.1998.5906
  32. Shin, S. and Lee, W. I., 2000, 'Finite Element Analysis of Incompressible Viscous Flow with Moving Free Surface by Selective Volume of Fluid Method,' Int. J. Heat fluid Flow, Vol. 21,pp. 197-206 https://doi.org/10.1016/S0142-727X(99)00083-1
  33. 김우승, 권용복, 임익태, 1998, '암시적 VOF 방법을 이용한 주조공정의 충전과정 해석,' 대한기계학회논문집 B 권,22, 10,pp. 1401-1409
  34. 임익태, 김우승, 1998, '암시적 방법을 이용한 충전 알고리즘의 개발,' 대한기계학회논문집 B권, 22, 1,pp. 104-112
  35. 김민수, 박종선, 이우일, '자유 표면이 존재하는 유체 유동 해석을 위한 VOF 방법 기반의 새로운 수치 기법 ( II ) - 캐비티 충전 문제와 슬로싱 문제에의 응용,' 대한기계학회논문집 (제출)
  36. 김민수, 1998, '자유 표면이 존재하는 유체 유동의 유한 요소 해석,' 공학박사 학위논문, 서울대학교
  37. ?Tadmor, Z., Broyer, E. and Gutfinger, C., 1974, 'Flow analysis Network(FAN) - A Method for solving flow Problems in Polymer Processing,' Polymer Engrg. Sci., Vol. 14,pp. 660-665 https://doi.org/10.1002/pen.760140913
  38. Broyer, E., Gutfinger, C. and Tadmor, Z., 1975, 'A Theoretical Model for the Cavity Filling Process in Injection Molding,' Transac. Society of Pheology, Vol. 19,No. 3,pp. 423-444
  39. Hieber, C. A. and Shen, S. F., 1980, 'A finite-Element/Finite-Difference Simulation of the Injection-Molding Filling Process,' J. Non-Newtonian fluid Mech., Vol. 7,pp. 1-32 https://doi.org/10.1016/0377-0257(94)01286-Q
  40. Kang, M. K., Lee, W. I., Yoo, J. Y. and Cho, S. M., 1995, 'Simulation of Mold filling Process during Resin Transfer Molding,' J. Mater. Proc. Manufact. Sci., Vol. 3,pp. 297-313
  41. Takewaki, H., Nishiguchi, A. and Yabe, T., 1985, 'Cubic Interpolated Pseudo-Particle Method(CIP) for solving Hyperbolic-Type Equations,' J. Comput. Phys., Vol. 61,pp. 261-268 https://doi.org/10.1016/0021-9991(85)90085-3
  42. Makuuchi, H., Aoki, T. and Yabe, T., 1997, 'Implicit CIP (Cubic-Interpolated Propagation) Method in Two Dimensions,' JSME Int. J., Series B, Vol. 40, No. 3, pp. 365-376
  43. van Leer, B., 1977, 'Towards the Ultimate Conservative Difference Scheme. IV. A New Approach to Numerical Convection,' J. Comput. Phys., Vol. 23,pp. 276-299 https://doi.org/10.1016/0021-9991(77)90095-X
  44. Noh, W. F. and Woodward, P., 1976, 'SLIC(Simple Line Interface Calculation),' in Proceedings of the fifth International Conference on Numerical methods in fluid Dynamics, ed. van de Vooren, zandbergen, P. J., Lecture Notes in Physics, Vol. 59, pp. 330-340, Springer-Verlag, New York
  45. Youngs, D. L., 1982, 'Time-Dependent Multi-Material flow with Large Fluid Distortion,' in Numerical Methods for fluid Dynamics, ed. Morton, K. W. and Baines, M. J., pp. 273-285, Academic Press, New York
  46. Wang, S. P. and Wang, K. K., 1994, 'A Net Inflow Method for Incompressible Viscous Flow with Moving Free Surface,' Int. J. Numer. Methods Fluids, Vol. 18, pp. 669-694 https://doi.org/10.1002/fld.1650180704
  47. Reddy, J. N. and Gartling, D. K., 1994, The Finite Element Methods in Heat Transfer and Fluid Dynamic, CRC Press, Florida
  48. Chorin, A. J., 1968, 'Numerical solution of the Navier-Stokes Equations,' Mathematics of Computation, Vol. 22,pp. 745-762 https://doi.org/10.2307/2004575
  49. Donea, J., Giuliani, S., Laval, H. and Quartapelle, L., 1982, 'Finite Element Solution of the Unsteady Navier-Stokes Equations by a Fractional Step method,' Comput. Methods Appl. Mech. Engrg., Vol. 30,pp. 53-73 https://doi.org/10.1016/0045-7825(82)90054-8
  50. Kim, J. and Moin, P., 1985, 'Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations,' J. Comput. Phys., Vol. 59, pp. 308-323 https://doi.org/10.1016/0021-9991(85)90148-2
  51. Ramaswamy, B. and Jue, T. C., 1992, 'Some Recent Trends and Developments in Finite Element Analysis for Incompressible Thermal Flows,' Int. J. Numer. Methods Engrg., Vol. 35, pp. 671-707 https://doi.org/10.1002/nme.1620350405
  52. Choi, H. G., Choi, H. and Yoo, J. Y., 1997, 'A Fractional four-Step Finite Element Formulation of the Unsteady Incompressible Navier-Stokes Equations using SUPG and Linear Equal-Order Element Methods,' Comput. Methods Appl. Mech. Engrg., Vol. 143, pp. 333-348 https://doi.org/10.1016/S0045-7825(96)01156-5
  53. Kelly, D. W., Nakazawa, S., Zienkiewicz, O. C. and Heinri, J. C., 1980, 'A Note on Upwinding and Anisotropic Balancing Dissipation in Finite Element Approximations to convective Diffusion Problems,' Int. J. Numer. methods Engrg., Vol. 15, pp. 1705-1711 https://doi.org/10.1002/nme.1620151111
  54. Brooks, A. N. and Hughes, T. J. R., 1982, 'Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations,' Comput. Methods Appl. Mech. Engrg., Vol. 32, pp. 199-259 https://doi.org/10.1016/0045-7825(82)90071-8
  55. Martin, J. C. and Moyce, W. J., 1952, 'An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane,' Philos. trans. Roy. Soc. London Ser. A, Math. Phys. Sci., Vol. 244, pp. 312-324 https://doi.org/10.1098/rsta.1952.0006
  56. Laitone, E. V., 1960, 'The Second Approximation to Conical and solitary Waves,' J. Fluid Mech., Vol. 9, pp.430-444 https://doi.org/10.1017/S0022112060001201
  57. Byatt-Smith, J. G. B., 1971, 'An Integral Equation for Unsteady Surface Waves and a Comment on the Boussinesq Equation,' J. Fluid Mech., Vol. 48, pp. 625-633 https://doi.org/10.1017/S0022112071002295
  58. Maxworthy, T., 1976, 'Experiments on Collisions between Solitary Waves,' J. Fluid Mech., Vol. 76, pp. 177-185 https://doi.org/10.1017/S0022112076003194
  59. J. Fluid Mech. v.49 An Integral Equation for Unsteady Surface Waves and a Comment on the Boussinesq Equation Byatt-Smith, J. G. B.
  60. J. Fluid Mech. v.76 Experiments on Collisions between Solitary Waves Maxworthy, T.