• Title/Summary/Keyword: VOC emission

Search Result 194, Processing Time 0.027 seconds

VOCs Emission Characteristics of Coating Materials for Wood Finishing (목재용 마감도료의 휘발성유기화합물 방출특성)

  • Park, Sang-Bum;Lee, Min;Lee, Sang-Min;Kang, Yeong-Seok
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.1
    • /
    • pp.22-30
    • /
    • 2015
  • In order to prevent decay, distortion, bending, twist on wood products such as wooden furnitures, variety of coating materials were developed and used so far. The coating materials for wood finishing can be synthesized by natural resource or petroleum. However, these coating materials can cause contamination of indoor air quality due to emission of volatile organic compounds (VOCs). In this study, commercialized coating materials for wood finishing such as varnish, coat, and stain were evaluated on emission characteristics of VOCs. Among the varnish, eco-friendly products had about 15~46% lower TVOC emission ($1,042{\mu}g/m^2h{\sim}3,257{\mu}g/m^2h$, respectively, than typical product ($7,100{\mu}g/m^2h$). Natural resource based coating material showed lowest TVOC emission level. However, one of natural resource based waterborne stain showed higher TVOC emission level because waterborne stain already contained higher amount of natural VOC. Oil-based stain might not be suitable for indoor use on interior wall and furniture due to exceed amount of TVOC. Based on results, natural resource based coat or waterborne stain are recommenced to use on wood products.

Estimation of Air Pollutant Emissions for the Application of Photochemical Dispersion Model in the Seoul Metropolitan Area (광화학 확산모델 적용을 위한 수도권지역의 대기오염물질 배출량 산출)

  • 이종범;김용국;김태우;방소영;정유정
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.2
    • /
    • pp.123-135
    • /
    • 1997
  • An air pollutant emission inventory system for the input preparations of photochemical dispersion model was developed. Using the system, anthropogenic emissions as well as biogenic emissions in the Seoul metropolitan area were calculated. Anthropogenic emission by fuel combustion using regional cosumption data, and the laundries and so forth was estimated. The biogenic emission was estimated based upon meteorological data and the distribution of land use type in the study area. The anthropogenic emission of pollutants was highest in Seoul, and the second highest in Inchon. TSP and $SO_2$ were found large quantities during the winter due to increased consumption of heating oil. NOx and THC were emitted without seasonal variation. Among biogenic emissions, PAR was very common while NO was the least common. PAR, OLE, and ALD2 were emitted in large volumes in coniferous forest areas, while ISOP was emitted in deciduous forest areas. Generally, most biogenic emissions increased during daytime, and peaked between oen and two o'clock. Because of strong solar radiation, emission during the summer was high. Biogenic NO emissions were found to be lower compared to anthropogenic emissons, and other VOC was indicated relatively high. In the study area, among biogenic emissions PAR was found to be 3 times, OLE 8 times,and ALD2 12 times more common than among anthropogenic emissions.

  • PDF

Health Risk Assessment with Source Apportionment of Ambient Volatile Organic Compounds in Seoul by Positive Matrix Factorization (수용체 모델(PMF)를 이용한 서울시 대기 중 VOCs의 배출원에 따른 위해성평가)

  • Kwon, Seung-Mi;Choi, Yu-Ri;Park, Myoung-Kyu;Lee, Ho-Joon;Kim, Gwang-Rae;Yoo, Seung-Sung;Cho, Seog-Ju;Shin, Jin-Ho;Shin, Yong-Seung;Lee, Cheolmin
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.384-397
    • /
    • 2021
  • Background: With volatile organic compounds (VOCs) containing aromatic and halogenated hydrocarbons such as benzene, toluene, and xylene that can adversely affect the respiratory and cardiovascular systems when a certain concentration is reached, it is important to accurately evaluate the source and the corresponding health risk effects. Objectives: The purpose of this study is to provide scientific evidence for the city of Seoul's VOC reduction measures by confirming the risk of each VOC emission source. Methods: In 2020, 56 VOCs were measured and analyzed at one-hour intervals using an online flame ionization detector system (GC-FID) at two measuring stations in Seoul (Gangseo: GS, Bukhansan: BHS). The dominant emission source was identified using the Positive Matrix Factorization (PMF) model, and health risk assessment was performed on the main components of VOCs related to the emission source. Results: Gasoline vapor and vehicle combustion gas are the main sources of emissions in GS, a residential area in the city center, and the main sources are solvent usage and aged VOCs in BHS, a greenbelt area. The risk index ranged from 0.01 to 0.02, which is lower than the standard of 1 for both GS and BHS, and was an acceptable level of 5.71×10-7 to 2.58×10-6 for carcinogenic risk. Conclusions: In order to reduce the level of carcinogenic risk to an acceptable safe level, it is necessary to improve and reduce the emission sources of vehicle combustion and solvent usage, and eco-car policies are judged to contribute to the reduction of combustion gas as well as providing a response to climate change.

A Review on VOCs Control Technology Using Electron Beam

  • Son, Youn-Suk;Kim, Ki-Joon;Kim, Jo-Chun
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.63-71
    • /
    • 2010
  • The removal characteristics for aromatic and aliphatic VOCs by electron beam (EB) were discussed in terms of several removal variables such as initial VOC concentration, absorbed dose, background gas, moisture content, reactor material and inlet temperature. It was reviewed that only reactor material was an independent variable among the potential control factors concerned. It was also suggested that main mechanism by EB should be radical reaction for the VOC removal rather than that by primary electrons. It was discussed that the removal efficiency of benzene was lower than that of hexane due to a closed benzene ring. In the case of aromatic VOCs, it was observed that the decomposition of the VOCs with more functional groups attached on the benzene ring was much easier than those with less ones. As for aliphatic VOCs, it was also implied that the longer carbon chain was, the higher the removal efficiency became. An EB-catalyst hybrid system was discussed as an alternative way to remove VOCs more effectively than EB-only system due to much less by-products. This hybrid included supporting materials such as cordierite, Y-zeolite, and $\gamma$-alumina.

Sensitivity of Ozone Concentrations to Ozone Precursor Emissions In Busan Metropolitan Area Using the Carbon Bond Mechanism IV (CB4를 이용하여 부산 지역의 오존 전구 물질의 배출량에 대한 오존 농도의 민감도)

  • Lee, Hwa-Woon;Roh, Soon-A;Kim, Heon-Sook
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.362-363
    • /
    • 2003
  • Photochemical ozone is formed from nitrogen oxides (NOx) and volatile organic compounds(VOCs) through non-linear interactions between chemical reactions and meteorology, and the relationship between precursors and photochemical ozone will be changed to match the emission distribution and meteorological fields. It is generally known that for some conditions the process of ozone formation is controlled almost entirely by NOx and is largely independent of VOC, while for other conditions ozone production increases with increasing VOC and does not increase(or sometimes even decreases) with increasing NOx (omitted)

  • PDF

An Experimental Study on the Emission Characteristics of VOCs Generation from Automotive Fuel Tank at Gasoline Reservoir (주유소에서 자동차 주유시 발생하는 VOCs 배출특성에 관한 조사연구)

  • 김기선;배성근;윤성렬;이원수;선우영;홍지형
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.91-92
    • /
    • 2003
  • 경제성장 및 산업의 고도화에 따른 자동차 보급의 증가, 유류 및 유기용제의 사용량 증가로 휘발성유기화합물질(Volatile Organic Compounds; 이하 VOCs)의 배출량이 증가하고 있다. 이러한 VOCs의 배출원중에 하나가 주유소에서 발생하는 VOCs이다(정일록 등, 1995). 주유소에서의 VOCs 배출원은 EPAAP-42의 경우 지하저장탱크 숨구멍을 통한 증발과 유조차에서 지하 저장탱크에 휘발유 등 석유 제품을 하역시 증발을 Stage I, 지하저장에서 자동차에 주유시 증발 및 주유시 흘림에 의한 VOCs 증발을 Stage II로 구분되어 있다. (중략)

  • PDF

A Study on the Volatile Organic Compounds(VOCs) Emission from Pesticides Application in 2001 (농약 사용에서 발생하는 VOC 배출량 추정(2001))

  • Jang, Young-Gi;Hong, Young-Sil;Kim, Gwan;Hong, Ji-Hyung
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.407-408
    • /
    • 2003
  • 농약은 작물에 피해를 주는 병해충이나 잡초방제는 물론 필요에 따라 작물의 생장을 조절하여 농작물의 수량 및 품질을 향상시키는데 사용되며 농산물의 유통 및 저장기간 중 신선도를 유지시키는데 사용되는 중요한 농업용 자재이다. 그러나 농약사용으로 얻어지는 많은 이점에도 불구하고 살포된 농약으로 인해 건강이나 환경에 피해를 주고있다. 하지만 지금까지의 연구는 농약의 잔류량에 대한 연구만 있을 뿐 대기오염발생량에 대한 연구는 미비한 실정이다. 이에 본 연구에서는 농약 사용에 의한 VOC 배출량 산정방법을 검토하고 배출량을 산정하였다. (중략)

  • PDF

A study on the air pollutant emission trends in Gwangju (광주시 대기오염물질 배출량 변화추이에 관한 연구)

  • Seo, Gwang-Yeob;Shin, Dae-Yewn
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.4
    • /
    • pp.1-26
    • /
    • 2009
  • We conclude the following with air pollution data measured from city measurement net administered and managed in Gwangju for the last 7 years from January in 2001 to December in 2007. In addition, some major statistics governed by Gwangju city and data administered by Gwangju as national official statistics obtained by estimating the amount of national air pollutant emission from National Institute of Environmental Research were used. The results are as follows ; 1. The distribution by main managements of air emission factory is the following ; Gwangju City Hall(67.8%) > Gwangsan District Office(13.6%) > Buk District Office(9.8%) > Seo District Office(5.5%) > Nam District Office(3.0%) > Dong District Office(0.3%) and the distribution by districts of air emission factory ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%). That by types(Year 2004~2007 average) is also following ; Type 5(45.2%) > Type 4(40.7%) > Type 3(8.6%) > Type 2(3.2%) > Type 1(2.2%) and the most of them are small size of factory, Type 4 and 5. 2. The distribution by districts of the number of car registrations is the following ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%) and the distribution by use of car fuel in 2001 ; Gasoline(56.3%) > Diesel(30.3%) > LPG(13.4%) > etc.(0.2%). In 2007, there was no ranking change ; Gasoline(47.8%) > Diesel(35.6%) > LPG(16.2%) >etc.(0.4%). The number of gasoline cars increased slightly, but that of diesel and LPG cars increased remarkably. 3. The distribution by items of the amount of air pollutant emission in Gwangju is the following; CO(36.7%) > NOx(32.7%) > VOC(26.7%) > SOx(2.3%) > PM-10(1.5%). The amount of CO and NOx, which are generally generated from cars, is very large percentage among them. 4. The distribution by mean of air pollutant emission(SOx, NOx, CO, VOC, PM-10) of each county for 5 years(2001~2005) is the following ; Buk District(31.0%) > Gwangsan District(28.2%) > Seo District(20.4%) > Nam District(12.5%) > Dong District(7.9%). The amount of air pollutant emission in Buk District, which has the most population, car registrations, and air pollutant emission businesses, was the highest. On the other hand, that of air pollutant emission in Dong District, which has the least population, car registrations, and air pollutant emission businesses, was the least. 5. The average rates of SOx for 5 years(2001~2005) in Gwangju is the following ; Non industrial combustion(59.5%) > Combustion in manufacturing industry(20.4%) > Road transportation(11.4%) > Non-road transportation(3.8%) > Waste disposal(3.7%) > Production process(1.1%). And the distribution of average amount of SOx emission of each county is shown as Gwangsan District(33.3%) > Buk District(28.0%) > Seo District(19.3%) > Nam District(10.2%) > Dong District(9.1%). 6. The distribution of the amount of NOx emission in Gwangju is shown as Road transportation(59.1%) > Non-road transportation(18.9%) > Non industrial combustion(13.3%) > Combustion in manufacturing industry(6.9%) > Waste disposal(1.6%) > Production process(0.1%). And the distribution of the amount of NOx emission from each county is the following ; Buk District(30.7%) > Gwangsan District(28.8%) > Seo District(20.5%) > Nam District(12.2%) > Dong District(7.8%). 7. The distribution of the amount of carbon monoxide emission in Gwangju is shown as Road transportation(82.0%) > Non industrial combustion(10.6%) > Non-road transportation(5.4%) > Combustion in manufacturing industry(1.7%) > Waste disposal(0.3%). And the distribution of the amount of carbon monoxide emission from each county is the following ; Buk District(33.0%) > Seo District(22.3%) > Gwangsan District(21.3%) > Nam District(14.3%) > Dong District(9.1%). 8. The distribution of the amount of Volatile Organic Compound emission in Gwangju is shown as Solvent utilization(69.5%) > Road transportation(19.8%) > Energy storage & transport(4.4%) > Non-road transportation(2.8%) > Waste disposal(2.4%) > Non industrial combustion(0.5%) > Production process(0.4%) > Combustion in manufacturing industry(0.3%). And the distribution of the amount of Volatile Organic Compound emission from each county is the following ; Gwangsan District(36.8%) > Buk District(28.7%) > Seo District(17.8%) > Nam District(10.4%) > Dong District(6.3%). 9. The distribution of the amount of minute dust emission in Gwangju is shown as Road transportation(76.7%) > Non-road transportation(16.3%) > Non industrial combustion(6.1%) > Combustion in manufacturing industry(0.7%) > Waste disposal(0.2%) > Production process(0.1%). And the distribution of the amount of minute dust emission from each county is the following ; Buk District(32.8%) > Gwangsan District(26.0%) > Seo District(19.5%) > Nam District(13.2%) > Dong District(8.5%). 10. According to the major source of emission of each items, that of oxides of sulfur is Non industrial combustion, heating of residence, business and agriculture and stockbreeding. And that of NOx, carbon monoxide, minute dust is Road transportation, emission of cars and two-wheeled vehicles. Also, that of VOC is Solvent utilization emission facilities due to Solvent utilization. 11. The concentration of sulfurous acid gas has been 0.004ppm since 2001 and there has not been no concentration change year by year. It is considered that the use of sulfurous acid gas is now reaching to the stabilization stage. This is found by the facts that the use of fuel is steadily changing from solid or liquid fuel to low sulfur liquid fuel containing very little amount of sulfur element or gas, so that nearly no change in concentration has been shown regularly. 12. Concerning changes of the concentration of throughout time, the concentration of NO has been shown relatively higher than that of $NO_2$ between 6AM~1PM and the concentration of $NO_2$ higher during the other time. The concentration of NOx(NO, $NO_2$) has been relatively high during weekday evenings. This result shows that there is correlation between the concentration of NOx and car traffics as we can see the Road transportation which accounts for 59.1% among the amount of NOx emission. 13. 49.1~61.2% of PM-10 shows PM-2.5 concerning the relationship between PM-10 and PM-2.5 and PM-2.5 among dust accounts for 45.4%~44.5% of PM-10 during March and April which is the lowest rates. This proves that particles of yellow sand that are bigger than the size $2.5\;{\mu}m$ are sent more than those that are smaller from China. This result shows that particles smaller than $2.5\;{\mu}m$ among dust exist much during July~August and December~January and 76.7% of minute dust is proved to be road transportation in Gwangju.

Current Status of Ship Emissions and Reduction of Emissions According to RSZ in the Busan North Port (부산 북항에서의 선박 배출물질 현황과 선속제한에 의한 배출량 감소 연구)

  • Lee, Bo-Kyeong;Lee, Sang-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.572-580
    • /
    • 2019
  • In view of the numerous discussions on global environmental issues, policies have been implemented to limit emissions in the field of marine transport, which accounts for a major part of international trade. In this study, a ship's emissions were calculated by applying the engine load factor to determine the total quantity of emissions based on the ship's speed reduction. For ships entering and leaving the Busan North Port from 1 January to 31 December 2017, emissions were calculated and analyzed based on the ship's type and its speed in the reduced speed zone (RSZ), which was set to 20 nautical miles. The comparison of the total amount of emissions under all situations, such as cruising, maneuvering, and hotelling modes revealed that the vessels that generated the most emissions were container ships at 76.1 %, general cargo ships at 7.2 %, and passenger ships at 6.8 %. In the cruising and maneuvering modes, general cargo ships discharged a lesser amount of emission in comparison with passenger ships; however, in the hotelling mode, the general cargo ships discharged a larger amount of emission than passenger ships. The total emissions of nitrogen oxides (NOx), sulphur oxides (SOx), particulate matter (PM), and volatile organic compounds (VOC), were 49.4 %, 45 %, 4 %, and 1.6 %, respectively. Furthermore, the amounts of emission were compared when ships navigated at their average service speed, 12, 10, and 8 knots in the RSZ, respectively. At 12 knots, the reduction in emissions was more than that of the ships navigating at their average service speed by 39 % in NOx, 40 % in VOC, 42 % in PM, and 38 % in Sox. At 10 knots, the emission reductions were 52 %, 54 %, 56 %, and 50 % in NOx, VOC, PM, and Sox, respectively. At 8 knots, the emission reductions were 62 %, 64 %, 67 %, and 59 % in NOx, VOC, PM, and Sox, respectively. As a result, the emissions were ef ectively reduced when there was a reduction in the ship's speed. Therefore, it is necessary to consider limiting the speed of ships entering and leaving the port to decrease the total quantity of emissions.

Tightness of specimen sealing box in 20 L test chamber to evaluate building materials emitting pollutants (건축자재에서 방출되는 오염물질 평가 시 사용되는 20 L 시험챔버 시편홀더의 기밀성 개선)

  • Shin, Woo Jin;Lee, Chul Won;Kim, Man Goo
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.261-267
    • /
    • 2007
  • The 20 L small chamber test method is to evaluate pollutants such as TVOC, formaldehyde emitted from building materials. This method was only designed to evaluate the surface emission of sample exposed in the chamber. In this method, building materials cut with a fixed standard size are fixed in a sample sealing box. The sample sealing box is put into the 20 L test chamber. This chamber is ventilated at a standard air change rate with purified air for 7 days then the sample from the chamber is collected and analyzed to measure the emission rate of TVOC and formaldehyde. In this method, however, if the sealing box does not guarantee airtightness, accurate evaluation for the building materials can not be achieved due to the pollutants emitted from edge of the sample so called, edge effect. This edge effect can be much greater when evaluating panels such as plywood, flooring due to their surface treatment. In this study, flooring was tested to check airtightness of the sample sealing box with analytic results between 1L and 20 L test chamber. Furniture materials like LPM coated one side surface treatment and MDF coated both sides surface treatment with LPM were tested to identify whether the improvement of the sample sealing box airtightness is possible with the comparison between existing and improved test method that low VOC emission tape was used to seal the sample edge. After 7 days, MDF TVOC emission rate was different according to the existence and nonexistence of tape. The emission rate of the existing test method was $0.009mg/m^2h$ and that of improved test method was $0.003mg/m^2h$. Relative standard deviation for the existing test method was $0.004mg/m^2h$ and relative standard deviation for the improved test method was $0.002mg/m^2h$ when the same sample was analyzed three times. The improved test method in this study using low VOC emission tape was effective and able to reduce the heterogeneous effect of the edge from the sample sealing box.