• Title/Summary/Keyword: VIEM

Search Result 14, Processing Time 0.036 seconds

Optimization of the Deflection Yoke Coil for Color Display Tubes

  • Im, Chang-Hwan;Jung, Hyun-Kyo;Jung, Kwang-Sig;Cho, Yoon-Hyoung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.3
    • /
    • pp.81-85
    • /
    • 2001
  • Processes for optimizing the coil shape of deflection yoke are proposed A very accurate and practical winding modeler is developed and volume integral equation method (VIEM) is used for field calculation. Two steps of optimizations are done by using (1+1) evolution strategy. Those are dimensional optimization and pin-position optimization Various techniques are applied for reducing computational time for the optimization.

Switched Reluctance Motors for Electric Drive of Overland Belt Conveyor

  • Ptakh, Gennady K.;Evsin, Nicholas F.;Zvezdunov, D. Alex;Rozhkov, Dmitry V.;Yakovenko, Alexander E.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.409-414
    • /
    • 2014
  • The parameters and operating characteristics of the switched reluctance motor (SRM) for the electric drive of the overland belt conveyor CLM-4500 have been presented. The motor power capacity has been equal to 1250 kW, the motor speed - 1000 min-1. SRM power supply has been provided by a three-phase voltage inverter and a 12-pulse rectifier circuit. The group electric drive has been installed on sections number 2 and 3, 3770 m and 3375 m length, respectively, on the areas of "Berezovsky Strip" JSC, a member of the Siberian Coal Energy Company.

Elastic Analysis of Unbounded Solids with Anisotropic Inclusions (이방성 함유체를 포함하는 무한고체의 탄성해석)

  • Choe, Seong-Jun;Ra, Won-Seok;Lee, Jeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1993-2006
    • /
    • 1999
  • A Volume Integral Equation Method (VIEM) is applied for the effective analysis of elastic wave scattering problems and plane elastostatic problems in unbounded solids containing general anisotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of anisotropic inclusions and voids. Through the analysis of plane elastodynamic and elastostatic problems in unbounded isotropic matrix with orthotropic inclusions and voids, it will be established that this new method is very accurate and effective for solving plane elastic problems in unbounded solids containing general anisotropic inclusions and voids.

Volume Integral Equation Method for Multiple Isotropic Inclusion Problems in an Infinite Solid Under Uniaxial Tension (인장 하중을 받는 무한 고체에 포함된 다수의 등방성 함유체 문제 해석을 위한 체적 적분방정식법)

  • Lee, Jung-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.881-889
    • /
    • 2010
  • A volume integral equation method (VIEM) is introduced for solving the elastostatic problems related to an unbounded isotropic elastic solid; this solid is subjected to remote uniaxial tension, and it contains multiple interacting isotropic inclusions. The method is applied to two-dimensional problems involving long parallel cylindrical inclusions. A detailed analysis of the stress field at the interface between the matrix and the central inclusion is carried out; square and hexagonal packing of the inclusions are considered. The effects of the number of isotropic inclusions and different fiber volume fractions on the stress field at the interface between the matrix and the central inclusion are also investigated in detail. The accuracy and efficiency of the method are clarified by comparing the results obtained by analytical and finite element methods. The VIEM is shown to be very accurate and effective for investigating the local stresses in composites containing isotropic fibers.

Elastic Analysis of an Unbounded Elastic Solid with an Inclusion Considering Composite Fiber Volume Fraction (섬유 체적분율을 고려한, 단일의 함유체를 포함한 무한고체에서의 탄성해석)

  • Lee, Jung-Ki;Han, Hui-Duck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.89-96
    • /
    • 2007
  • A volume integral equation method (VIEM) is applied for the effective analysis of plane elastostatic problems in unbounded solids containing single isotropic inclusion of two different shapes considering composite fiber volume fraction. Single cylindrical inclusion and single square cylindrical inclusion are considered in the composites with six different fiber volume fractions (0.25, 0.30, 0.35, 0.40, 0.45, 0.50). Using the rule of mixtures, the effective material properties are calculated according to the corresponding composite fiber volume fraction. The analysis of plane elastostatic problems in the unbounded effective material containing single fiber that covers an area corresponding to the composite fiber volume fraction in the bounded matrix material are carried out. Thus, single fiber, matrix material with a finite region, and the unbounded effective material are used in the VIEM models for the plane elastostatic analysis. A detailed analysis of stress field at the interface between the matrix and the inclusion is carried out for single cylindrical or square cylindrical inclusion. Next, the stress field is compared to that at the interface between the matrix and the single inclusion in unbounded isotropic matrix with single isotropic cylindrical or square cylindrical inclusion. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of inclusions. Through the analysis of plane elastostatic problems, it will be established that this new method is very accurate and effective for solving plane elastic problems in unbounded solids containing inclusions considering composite fiber volume fraction.

Elastic Analysis of a Half-Plane Containing Multiple Inclusions Using Volume Integral Equation Method (체적 적분방정식법을 이용한, 다수의 함유체를 포함한 반무한 고체에서의 탄성해석)

  • Lee, Jung-Ki;Ku, Duck-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.148-161
    • /
    • 2008
  • A volume integral equation method (VIEM) is used to calculate the plane elastostatic field in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions subject to remote loading. A detailed analysis of stress field at the interface between the matrix and the central inclusion in the first column of square packing is carried out for different values of the distance between the center of the central inclusion in the first column of square packing of inclusions and the traction-free surface boundary in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions. The method is shown to be very accurate and effective for investigating the local stresses in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions.

Characteristic Analysis of Disk Type Generator with Separated Slots (분리형 슬롯구조를 지니는 디스크형 발전기의 특성 해석)

  • Kim, Jae-Kwang;Cho, Dong-Hyeok;Jung, Hyun-Kyo;Lee, Cheol-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.150-152
    • /
    • 2001
  • 근래 들어 소용량의 디스크형 발전기(disk type generator)가 여러 분야에서 이용되면서 기존 모델보다 개선된 특성을 나타내는 새로운 구조에 대한 연구가 진행되고 있다. 본 논문에서는 분리형 슬롯 구조를 지니는 디스크형 발전기를 제안하였고 그 특성을 해석하여 기존 모델과 비교함으로써 우수성을 입증하였다. 제안된 모델의 3차원 자계 해석을 위해서 체적적분방정식법(VIEM)을 이용하였다. 전기자와 계자의 상대 위치에 따른 자속 밀도 분포와 직렬 코일 내부의 총 자속량을 체적적분방정식법을 통하여 정확하게 계산하고 여기서 구해진 자속량에 대한 몇 가지 후처리 과정을 통해서 발전기의 주요 특성들을 구했다. 이 결과를 동일한 설계 제한 사항을 고려한 기존 모델의 결과와 비교하여 제안된 구조를 지니는 디스크형 발전기의 우수성을 입증하였고 실제 설계에도 활용이 가능하도록 했다.

  • PDF

Stress Analysis in Multiple Isotropic Elliptical Fibers of Arbitrary Orientation (다수의 임의로 경사진 등방성 타원형 장섬유를 포함하는 복합재료에서의 응력 해석)

  • Lee, Jung-Ki;Oh, Sang-Min
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.235-244
    • /
    • 2013
  • A volume integral equation method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solid containing multiple isotropic elliptical fibers of arbitrary orientation subject to uniform stress at infinity. The fibers are assumed to be long parallel elliptical cylinders composed of isotropic elastic material perfectly bonded to the isotropic matrix. The solid is assumed to be under plane strain on the plane normal to the cylinders. A detailed analysis of the stress field at the matrix-fiber interface for square and hexagonal packing of the fibers is carried out for different values of the number, orientation angles and concentration of the elliptical fibers. The accuracy and efficiency of the method are examined through comparison with results obtained from analytical and finite element methods.

Volume Integral Equation Method for Multiple Anisotropic Inclusion Problems in an Infinite Solid under Uniaxial Tension (인장 하중을 받는 무한 고체에 포함된 다수의 이방성 함유체 문제 해석을 위한 체적 적분방정식법)

  • Lee, Jung-Ki
    • Composites Research
    • /
    • v.23 no.4
    • /
    • pp.7-13
    • /
    • 2010
  • A volume integral equation method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solids containing interacting multiple anisotropic inclusions subject to remote uniaxial tension. The method is applied to two-dimensional problems involving long parallel cylindrical inclusions. A detailed analysis of stress field at the interface between the matrix and the central inclusion is carried out for square and hexagonal packing of the inclusions. Effects of the number of anisotropic inclusions and various fiber volume fractions on the stress field at the interface between the matrix and the central inclusion are also investigated in detail. The accuracy of the method is validated by solving the single inclusion problem for which solutions are available in the literature.

Elastic Analysis of a Half-Plane Containing an Inclusion and a Void Using Mixed Volume and Boundary Integral Equation Method (혼합 체적-경계 적분방정식법을 이용한, 함유체와 공동을 포함한 반무한 고체에서의 탄성해석)

  • Lee, Jung-Ki;Yoon, Koo-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1072-1087
    • /
    • 2008
  • A mixed volume and boundary integral equation method (Mixed VIEM-BIEM) is used to calculate the plane elastostatic field in an isotropic elastic half-plane containing an isotropic or anisotropic inclusion and a void subject to remote loading parallel to the traction-free boundary. A detailed analysis of stress field at the interface between the isotropic matrix and the isotropic or orthotropic inclusion is carried out for different values of the distance between the center of the inclusion and the traction-free surface boundary in an isotropic elastic half-plane containing three different geometries of an isotropic or orthotropic inclusion and a void. The method is shown to be very accurate and effective for investigating the local stresses in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions and multiple voids.