• Title/Summary/Keyword: V-ring force

Search Result 21, Processing Time 0.029 seconds

Experimental Study on the Mold Life of Fine Blanking Using Thick Plate Materials (후판 소재를 적용한 파인 블랭킹 금형 수명에 관한 연구)

  • Park, D.H.;Hyun, K.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.149-156
    • /
    • 2021
  • Fine blanking is a high-precision process combining principles of metal stamping and cold forming. Unlike conventional metal stamping, fine blanking uses a special triple action such as V-ring force, counter force, shearing force. This study performed the effect of pocket-shaped compression molding on the mold life of the fine blanking using the 7.4mm thick SM45C material. In order to determine the lifespan of the punch and die in the fine blanking molds, a trial mold was manufactured and various punch materials were selected to perform the mold life test. A study on the life of a fine blanking mold by applying a thick plate material was experimentally performed through a mold test.

Fabrication of the (Alnico, Sm-Co) Bonded Magnet and its Magnetic Properties ((알니코, 사마리움-코발트) 본드자석의 제조 및 자기적 특성연구)

  • Kim, Jung-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.988-995
    • /
    • 2010
  • In this study the (Alnico, Sm-Co) bonded magnets were fabricated by mixing the Sm-Co added alnico alloy powders with epoxy resin and binder, appropriately. Also, the hybrid ring magnets of (Alnico, Sm-Co)/Sr-ferrite were fabricated by coupling the Sr-ferrite composite layer with an (Alnico, Sm-Co) magnet. The magnetic properties of (Alnico, Sm-Co) ring magnets were varied with the amount of Sm-Co powders. The addition of Sm-Co powders increased a remanent induction($B_r$) and coercive force($_BH_C$), while decreasing a surface flux density and repulsive distance. The surface flux density and repulsive distance for the (Alnico, Sm-Co) ring magnet increased with a magnetizing voltage up to about 160 V and reached an apparent saturation point. Also, the measurements of temperature and moisture characteristics showed that the surface flux densities of N-S poles and repulsive distance decreased a little within 4% after 10 days passed.

Mechanical Analysis of Field Coil Deformation in Gas Turbine Generator (가스터빈 발전기의 계자권선 손상에 관한 역학적 분석)

  • Han, Seok-Woo;Kwon, Young-Dong;Choe, Gyu-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.107-109
    • /
    • 1998
  • This paper presents mechanical analysis of gas turbine generator (113MVA, $3{\phi}$, 2P, 0.9PF, F class, 3600rpm, 60Hz, 13.8kV, 4.72kA, Air-Cooling) field coil deformation. Rotor end coil deformation is only appeared on turbine end but collector end coil is normal. Expansion direction of end coil is tangential not axial. Deformation appears more severe at top turn. Retaining ling is expanded by centrifugal force of coil and itself. In case friction coefficient between coil top surface and retaining ring insulation inner surface is small, coil end length ${\ell}$ does not change. However, in case friction coefficient big condition, coil end is expanded ${\Delta}{\ell}$ due to start and stop. Deformation is assumed about 30mm by watching photograph inner surface of retaining ring is coated by Teflon at manufacturing condition. Usually Teflon coating insulation surface is small friction coefficient. It's value 0.08${\sim}$0.15. However it's value exceeds more than 0.297. Since top turn deformation appears. The distortion and subsequent failure have occurred because of the lack of a sufficient slip-plane between the top field coil conductors and the inside surface of the retaining ring insulation on the turbine end of the field-winding.

  • PDF

Development of an ACL Anchor: Effects of the Design Parameters on the Performance of a New Anterior Cruciate Ligament Fixation Device

  • Kim, Jong-Dae;Oh, Chae-Youn;Kim, Cheol-Sang
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.132-138
    • /
    • 2008
  • We investigated the biomechanical properties of a newly designed self-expansion type anterior cruciate ligament (ACL) anchor. The ACL anchor consists of the ring section giving the elastic force, the wedge for maintaining in contact with the femur tunnel wall and the link suspending hamstring graft or artificial ligament. The main design parameters that determine the performance of this device were the expansion angle (${\theta}$) and the thickness ($t_R$). The Ti6Al4V anchors were heated after inserting in a jig for 1 hour at $800^{\circ}C$ in a protective argon gas atmosphere and allowed to cool to room temperature in the furnace. In order to investigate the influence of the expansion angle and the thickness of the ring on the biomechanical properties of the anchor, the maximum pull-out load, stiffness and slippage of the ACL anchor were measured using the pull-out tester, and statistical analyses were also executed. The present results showed that the design parameters gave a significant effect on the performance of the self- expansion type of anchor. The pull-out load of the ACL anchors significantly increased as the thickness of the ring section was increased, having a similar trend for both expansion angles. The ACL anchor showed about 2.5 times higher values of the pull-out load than that of the minimum load (500N)required for the "accelerated rehabilitation". The optimum ${\theta}$ and $t_R$ values of this ACL anchor were suggested to have sufficient resistance against the pull-out force, high stiffness and relatively low slippage after ACL reconstruction.

A Study on the Steps of Shear Deformations Behavior of Fine-Blanking Process (Fine-Blanking시 전단 단계별 변형 거동에 관한 연구)

  • 이종구;박원규
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.26-33
    • /
    • 2002
  • One characteristic of Fine-Blanking is that the size and the direction of stress and strain are very complex in the plastic flow according to the condition of blanking. Especially, they are affected by the clearance of punch and die, by the force of blanking holder and by the force of counter punch. The purpose of this research is to how the deformation behavior in shear zone more clearly, based on Green & Cauch's large deformation theory. The deformation behavior and cracks were investigated in each step of shear, according to punch penetration increase, the use of V-indenter ring and the hardness of materials. This research found that the transforming behavior was the same as pure discretion and the cracks could be prevented when hardness is low.

Design of Linear Ultrasonic Motor for Small tong Actuation (렌즈 구동을 위한 선형 초음파 전동기 설계)

  • Kwon Taeseong;Lee Seung-Yop;Kim Sookyung
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.190-194
    • /
    • 2005
  • There is a great demand of micro-actuators for mobile information devices such as SFF optical drives and mobile camera phones. However, conventional magnetic coils of electromagnetic motors are a major obstacle for miniaturization because of their complicated structures and large power consumption. In this paper, a linear ultrasonic motor to actuate focusing lens of mobile devices is proposed. The new actuator uses a ring type bimorph piezoelectric material, and $d_{31}$ mode is adopted for applying linear motion. The interaction between inertia force and friction force makes linear motion by high-frequency saw signal input. The saw signal gives steady forces on the one direction by asymmetric inclination property of the signal itself on time domain. A commercial FEM (ANSYS) was used in this investigation for simulating structural analysis, identification of dynamic property, such as resultant displacement and coupled analysis with piezoelectric material. To evaluate the performance of the new design, a prototype was manufactured and experiments were carried out. Experimental results show the actuator motion of 1.52 mm/s at 10 kHz input signal in 5 V.

  • PDF

Design of a Linear Ultrasonic Actuator for Small Lens Actuation (초소형 렌즈 구동을 위한 선형 초음파 구동기 설계)

  • Kwon, Tae-Seong;Choi, Yo-Han;Lee, Seung-Yop
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.251-256
    • /
    • 2006
  • There is a great demand of micro-actuators for mobile information devices such as SFF optical drives and mobile phone cameras. However, the magnetic coils used in conventional electromagnetic motors are a major obstacle for the miniaturization because of their complicated structures and large power consumption. In this paper, a linear ultrasonic motor to actuate focusing lens of mobile devices is proposed. The new actuator uses a ring type bimorph piezoelectric material, and $d_{31}$ mode is adopted for applying linear motion. The interaction between inertia force and friction force makes linear motion by high-frequency saw signal input. The saw signal gives steady forces on the one direction by asymmetric inclination property of the signal itself on time domain. A commercial FEM(ANSYS) was used in this investigation for simulating structural analysis, identification of dynamic property, such as resultant displacement and coupled analysis with piezoelectric material. To evaluate the performance of the new design, a prototype was manufactured and experiments were carried out. Experimental results show the actuator motion of 5.4 mm/s at 10V saw signal of 41 kHz.

  • PDF

Design and simulation of 500 MHz single cell superconducting RF cavity for SILF

  • Yanbing Sun;Wei Ma;Nan Yuan;Yulin Ge;Zhen Yang;Liping Zou;Liang Lu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.195-206
    • /
    • 2024
  • Shenzhen Innovation Light source Facility (SILF) is a 3.0 GeV fourth generation diffraction limited synchrotron light source currently under construction in Shenzhen. The SILF storage ring is proposed to use two 500 MHz single cell superconducting radio frequency (SRF) cavities to provide 2.4 MV RF voltage. In this study, we examined the geometric structure of mature CESR superconducting cavities and adopted a beam-pipe-type extraction scheme for high-order modes (HOM). One of the objectives of SRF cavity design and optimization in this study is to reduce Ep/Eacc and Bp/Eacc as much as possible to reduce power loss and ensure stable operation of the cavity. To reduce the risk of beam instability and thermal breakdown, the HOM and Multipacting (MP) are simulated. Moreover, the mechanical properties of the cavity are analyzed, including frequency sensitivity from pressure of liquid helium (LHe), stress, tuning, Lorentz force detuning (LFD), the microphone effect, and buckling. By comprehensive design and optimization of 500 MHz single-cell SRF cavities, a superconducting cavity for SILF storage ring was developed. This paper will detailed present the design and simulation.

Fabrication of Nb SQUID on an Ultra-sensitive Cantilever (Nb SQUID가 탑재된 초고감도 캔티레버 제작)

  • Kim, Yun-Won;Lee, Soon-Gul;Choi, Jae-Hyuk
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • Superconducting quantum phenomena are getting attention from the field of metrology area. Following its first successful application of Josephson effect to voltage standard, piconewton force standard was suggested as a candidate for the next application of superconducting quantum effects in metrology. It is predicted that a micron-sized superconducting Nb ring in a strong magnetic field gradient generates a quantized force of the order of sub-piconewtons. In this work, we studied the design and fabrication of Nb superconducting quantum interference device (SQUID) on an ultra-thin silicon cantilever. The Nb SQUID and electrodes were structured on a silicon-on-insulator (SOI) wafer by dc magnetron sputtering and lift-off lithography. Using the resulting SOI wafer, we fabricated V-shaped and parallel-beam cantilevers, each with a $30-{\mu}m$-wide paddle; the length, width, and thickness of each cantilever arm were typically $440{\mu}m,\;4.5{\mu}m$, and $0.34{\mu}m$, respectively. However, the cantilevers underwent bending, a technical difficulty commonly encountered during the fabrication of electrical circuits on ultra-soft mechanical substrates. In order to circumvent this difficulty, we controlled the Ar pressure during Nb sputtering to minimize the intrinsic stress in the Nb film and studied the effect of residual stress on the resultant device.

  • PDF

A study on minimization of fracture surface in fine blanking process using factorial analysis (요인분석법을 이용한 파인 블랭킹 공정의 파단면 최소화에 관한 연구)

  • Lee, Beom-Soon;Kim, Ok-Hwan
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.41-47
    • /
    • 2021
  • The Fine Blanking process is an effective precision shearing process that can obtain a smooth cutting surface and high product precision through a single blanking process. It is widely used in various manufacturing fields. However, shearing through this fine blanking process is only intended to minimize burrs, die rolls and fracture surfaces and does not completely remove them. Therefore, it is necessary to study the minimization of burrs, die rolls and fracture surfaces in the fine blanking process. In this study, a study was conducted on the relationship between the fracture surface and process conditions that occurred during product production using the fine blanking process. For this purpose, the shape of the V-ring indenter, the distance to the punch, and the pressure force, clearance, shear rate, and physical properties of the material were selected as process and design variables, and the relationship with the fracture surface according to each process and design condition was tested. It was analyzed through the Experimental Design Method.