• Title/Summary/Keyword: V-bending

Search Result 336, Processing Time 0.029 seconds

The Effect of Notch on Bending Fatigue Strength of Structural Steel (구조용 강의 굽힘 피로강도에 미치는 Notch의 영향)

  • 박노석
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.64-72
    • /
    • 1976
  • This experimental work was carried out to investigate the fatigue bending strength on various shapes and sizes of notches of the domestically manufactured steel plate. The notch types tested were a circular hole, U-and V-notches. The S-N diagram for different notch shapes were discussed in relation to plan bending strength and stress concentration factor of notches .The results of the experiments are summarized as follows : (1) The difference between stress concentration factor and notch factor was greater as the radium of notch root became smaller, and these values approached to an identical value as the radium of notch root increased. (2) It was shown that the plane bending fatigue limit of bar without notch for the hotrolled steel having the tensile strength of 33.1kg/$mm^2$was 17.0kg/$mm^2$. (3) U-and V-notch had a greater effect of stress concentration factor on the endurance limit, but O-hole showed the same effect only for $\o\pm2mm$. (4) For the same radius of notch root, U-notch showed a lower value of fatigue limit compared to V-notch and O-hole.

  • PDF

Highly Robust Bendable a-IGZO TFTs on Polyimide Substrate with New Structure

  • Kim, Tae-Woong;Stryakhilev, Denis;Jin, Dong-Un;Lee, Jae-Seob;An, Sung-Guk;Kim, Hyung-Sik;Kim, Young-Gu;Pyo, Young-Shin;Seo, Sang-Joon;Kang, Kin-Yeng;Chung, Ho-Kyoon;Berkeley, Brain;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.998-1001
    • /
    • 2009
  • A new flexible TFT backplane structure with improved mechanical reliability is proposed. Amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors based on this structure have been fabricated on a polyimide substrate, and the resultant mechanical durability has been evaluated in a cyclic bending test. The panel can withstand 10,000 bending cycles at a bending radius of 5 mm without any noticeable TFT degradation. After 10K bending cycles, the change of threshold voltage, mobility, sub-threshold slope, and gate leakage current were only -0.22V, -0.13$cm^2$/V-s, -0.05V/decade, and $-3.05{\times}10^{-13}A$, respectively.

  • PDF

Evaluation of Springback Angle Change with Applying Electric Current After V-bending Test on AZX311 Magnesium Alloy and Martensitic Steel (AZX311 마그네슘 합금과 마르텐사이트 강의 V-bending 이후 전류 인가에 따른 스프링백 각도 변화 평가)

  • Park, J.W.;Jeong, H.J.;Jin, S.W.;Kim, M.J.;Kim, J.J.;Han, H.N.
    • Transactions of Materials Processing
    • /
    • v.27 no.3
    • /
    • pp.177-183
    • /
    • 2018
  • The influence of electric current on the springback characteristics of AZX311 magnesium alloy and martensitic steel after V-bending test is investigated. Various pulsed electric currents are applied into the specimens followed by a V-bending test, and the changes in the springback angle are measured. In order to evaluate not only the thermal effect but also the athermal effect of electric current on the springback angle, the temperature rises resulting from the applied electric current are measured for all test conditions. As a result, it was found that the springback is significantly decreased as the current density increases. As for the martensitic steel, since the dislocation recovery immoderately occurs at a high electric current density condition of $80A/mm^2$, the optimal current density condition should be required.

A Research on the Processing Method to Minimize the Outer Radius(Sharp edge) in Sheet Metal Z-bending Work (박판의 Z-굽힘가공에서 외측 굽힘반지름 치수의 최소화(샤프에지) 가공법에 관한 연구)

  • Yun, Jae-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.349-355
    • /
    • 2017
  • Bending work using press dies involves bending a flat blank to a desired angle. The bending produces a flange (the bent part) and a web (the unbent part). The bending line will have a bending angle, and there is an inner and outer bending radius. The minimum inner radius size is determined by the material used. When the inner radius size is too small, there will be excess metal welding, which will cause a crack in the outer radius part. The outer bending radius size cannot be controlled by a bending punch and die block. Types of bending include V-bending, U-bending, O-bending, edge bending, twist bending, and crimping. Z-bending involves two bending lines, which are set on the upper side and under surface of the blank, respectively, and upward or downward bending is used. Z-bending is also called crank bending. Z-bending using this type of die structure will produce a standard inner bending radius. The standard size is the minimum bending radius that represents the angle radius of the bending punch. In industry, there is a need for a sharp edge shape with a very small size (R=0.2mm), but that is not possible when using bending punch and die block. The purpose of this research is to meet the need by development.

A Study on the Strength Characteristics of the FRP Bonding Method (FRP 이음방식에 따른 구조강도 특성에 관한 연구)

  • Kim, Kung-Woo;Kang, Dae-Kon;Baek, Myoung-Kee;Park, Jai-Hak
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.778-783
    • /
    • 2015
  • We studied about the strength characteristics of the FRP bonding method due to reduce accident on the oceans and protect life for my people. We test tension and bending strength of butt joint, lap joint, V-scarf joint, X-scarf joint. The result of test, it's pattern is similar both tension and bending strength. Tension strength and bending strength was excellent in order to X-scarf-butt joint-V-scarf-lap joint. The tension strength is the best properties X-scarf showed a 57% strength rate of the basic material, and bending strength showed a 77% strength rate of the basic material. Overall, the X-scarf 12t joint has most excellent properties of tension and bending strength. The lap joint has worst properties of tension and bending strength. We have to test having different over-lay of V-scarf and X-scarf joint each 12t, 16t, 20t. V-scarf of 20t over-lay has excellent character of tension and bending strength. But X-scarf of 12t over-lay has excellent character of tension and bending strength. The results are shown to the contrary. The ship is received a lot of stress. it's hard to compare a direction both actual and test. But we can acknowledge material basic characteristic of strength through tension and bending test. We give the four repair method; butt joint, lap joint, V-scarf joint, X-scarf joint and the reduced ratio in comparison with basic material; In addition give the separated data for V-scarf and X-scarf characteristic of 12t, 16t, 20t overlay length. For our study repair man can select good repair method in his work station.

A study on the unfolding length of Z-bending machining using thin plate (박판을 이용한 Z-굽힘 가공의 전개 길이에 관한 연구)

  • Park, Yong-Sun;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.19-25
    • /
    • 2021
  • The bending process of a press die is to bend a flat blank to the required angle. There are V-bending, U-bending, Z-bending, O-bending etc. for bending processing, and the basic principle of calculating the unfolding length of die processing is used as the neutral plane length. Since the constant of the length value of the neutral surface is different depending on the type of bending, it is impossible to accurately calculate it. In particular, Z-bending processing is performed twice, and it is set on the upper and lower surfaces of the blank, and bending processing occurs at the same time as the upward and downward bending, and the elongation of the material occurs and the material increases. It is not possible to check with the calculated value, and it occurs in many cases where the mold is modified after start-up. This study aims to minimize die modification by developing a formula to calculate the development length of Z-bend.

Optimal Design Method of the Cooling Channel for Manufacturing the Hot Stamped Component with Uniform Strength and Application to V-bending Process (균일 강도 핫스템핑 부품의 제조를 위한 냉각채널 최적 설계 및 V-벤딩 공정에의 적용)

  • Lim, Woo-Seung;Choi, Hong-Seok;Nam, Ki-Ju;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.63-72
    • /
    • 2011
  • In recent years, hot-stamped components are more increasingly used in the automotive industry in order to reduce weight and to improve the strength of vehicles. In hot stamping process, blank is hot formed and press hardened in a tool. However, in hot stamping without cooling channel, temperature of the tool increases gradually in mass production thus cannot meet the critical cooling rate to obtain high strength over 1500MPa. Warpage occurs in the hot stamped component due to non-uniform stress state caused by unbalanced cooling. Therefore, tools should be uniformly as well as rapidly cooled down by the coolant which flows through cooling channel. In this paper, optimal design method of cooling channel to obtain uniform and high strength of the component is proposed. Optimized cooling channel is applied to the hot press V-bending process. As a result of measuring strength, hardness and microstructure of the hot formed parts, it is known that the design methodology of cooling channel is effective to the hot stamping process.

The Prediction Equation for Bending Stress of Rail in Concrete Track by the Linear Multiple Regression Analysis (중회귀분석을 통한 콘크리트궤도 레일 휨응력 예측식)

  • Sung, Deok-Yong;Lim, Hyoung-Jun;Lee, Dong-Wook;Kim, Bag-Jin;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.315-323
    • /
    • 2010
  • It is suggested that the service life of the continuous welded rail(CWR) is estimated by the relationship between the rail surface irregularity according to the accumulated passing tonnage and bending fatigue of welded part in CWR. In this study, it measured bending stress of rail according to the rail surface irregularity in the concrete track on the Seoul Metro. In addition, the relationship between rail surface irregularity and bending stress in concrete track is analyzed by results of the field test. Finally, this study clarified the relationship among bending stress(Y) of rail, train speed(U), rail surface irregularity(v, w) in concrete track. The result of this study is able to use the basis data to establishing the periodic replacements criterion of CWR.

  • PDF

Changes of Photovoltaic Properties of Flexible CIGS Solar Cell Under Mechanical Bending Stress (플렉서블 CIGS 태양전지의 굽힘 응력에 의한 셀 특성 변화 연구)

  • Kim, Sungjun;Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.163-168
    • /
    • 2020
  • We studied the change of photovoltaic properties of a flexible CuInxGa(1-x)Se2 (CIGS) solar cell fabricated on polyimide by mechanical bending with curvature radii of 75 mm (75R) and 20 mm (20R). The flexible CIGS cells were flattened on a PET film, then placed and forced against the surface of a curved block fabricated with pre-designed curvatures. Both up (compressive) and down (tensile) bending were applied to a specimen of CIGS on PET with curvatures of 75R and 20R for 10,000 times and 2,000 times, respectively. From J-V measurements, we found that the conversion efficiency (Eff.) was reduced by 3% and 4% for up-and down-bending, respectively, at curvature 75R; it was greatly reduced by 15% for curvature 20R in the up-bending. However, the open circuit voltage (Voc) and short-circuit current density (Jsc) seemed to change little, within 3%, for the applied mechanical stresses. The degradation in Eff. resulted from the deterioration of the series (Rs) and shunt (Rsh) resistances of the solar cell.