Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.3.163

Changes of Photovoltaic Properties of Flexible CIGS Solar Cell Under Mechanical Bending Stress  

Kim, Sungjun (Department of Energy Convergence Engineering, Cheongju University)
Kim, Jeha (Department of Energy Convergence Engineering, Cheongju University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.3, 2020 , pp. 163-168 More about this Journal
Abstract
We studied the change of photovoltaic properties of a flexible CuInxGa(1-x)Se2 (CIGS) solar cell fabricated on polyimide by mechanical bending with curvature radii of 75 mm (75R) and 20 mm (20R). The flexible CIGS cells were flattened on a PET film, then placed and forced against the surface of a curved block fabricated with pre-designed curvatures. Both up (compressive) and down (tensile) bending were applied to a specimen of CIGS on PET with curvatures of 75R and 20R for 10,000 times and 2,000 times, respectively. From J-V measurements, we found that the conversion efficiency (Eff.) was reduced by 3% and 4% for up-and down-bending, respectively, at curvature 75R; it was greatly reduced by 15% for curvature 20R in the up-bending. However, the open circuit voltage (Voc) and short-circuit current density (Jsc) seemed to change little, within 3%, for the applied mechanical stresses. The degradation in Eff. resulted from the deterioration of the series (Rs) and shunt (Rsh) resistances of the solar cell.
Keywords
Flexible CIGS; Solar cell parameters; Mechanical bending; Compressive and tensile stress; Curvatures;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. H. Kim, H. T. Jang, J. S. Park, J. K. Yoon, E. S. Noh, J. S. Park, and K. W. Koo, Trans. Korean Inst. Elect. Eng., 67, 448 (2018). [DOI: https://10.5370/KIEE.2018.67.3.448]   DOI
2 K. Kim, J. Kim, M. G. Gang, S. H. Kim, S. Song, Y. Cho, D. Shin, Y. J. Eo, I. Jeong, S. K. Ahn, A. Cho, J. Kim, S. Yoon, P. P. Choi, W. Jo, J. H. Kim, J. Gwak, and J. H. Yun, Sol. Energy Mater. Sol. Cells, 195, 280 (2019). [DOI: https://doi.org/10.1016/j.solmat.2019.03.008]   DOI
3 W. C. Tsai, S. R. Thomas, C. H. Hsu, Y. C. Huang, J. Y. Tseng, T. T. Wu, C. H. Chang, Z. M. Wang, J. M. Shieh, C. H. Shen, and Y. L. Chueh, J. Mater. Chem. A, 4, 6980 (2016). [DOI: https://doi.org/10.1039/C5TA09000H]   DOI
4 B. J. Kim, D. H. Kim, Y. Y. Lee, H. W. Shin, G. S. Han, J. S. Hong, K. Mahmood, T. K. Ahn, Y. C. Joo, K. S. Hong, N. G. Park, S. Lee, and H. S. Jung, Energy Environ. Sci., 8, 916 (2015). [DOI: https://doi.org/10.1039/C4EE02441A]   DOI
5 A. Gerthoffer, F. Roux, F. Emieux, P. Faucherand, H. Fournier, L. Grenet, and S. Perraud, Thin Solid Films, 592, 99 (2015). [DOI: https://10.1016/j.tsf.2016.09.006]   DOI
6 C. K. Cho, W. J. Hwang, K. Eun, S. H. Choa, S. I. Na, and H. K. Kim, Sol. Energy Mater. Sol. Cells, 95, 3269 (2011). [DOI: https://doi.org/10.1016/j.solmat.2011.07.009]   DOI
7 T. F. O'Connor, A. V. Zaretski, S. Savagatrup, A. D. Printz, C. D. Wilkes, M. I. Diaz, E. J. Sawyer, and D. J. Lipomi, Sol. Energy Mater. Sol. Cells, 144, 438 (2016). [DOI: https://doi.org/10.1016/j.solmat.2015.09.049]   DOI