• Title/Summary/Keyword: V형상

Search Result 550, Processing Time 0.022 seconds

The Comparison of Various Turbulence Models of the Flow around a Wall Mounted Square Cylinder (벽면에 부착된 사각 실린더 주변 유동에 대한 난류모델 비교연구)

  • Bae, Jun-Young;Song, Gi-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.419-428
    • /
    • 2020
  • The flow past a wall mounted square cylinder, a typical and basic shape of building, bridge or offshore structure, was simulated using URANS computation through adoption of three turbulence models, namely, the k-ε model, k-ω model, and the v2-f model. It is well known that this flow is naturally unstable due to the Karman vortex shedding and exhibits a complex flow structure in the wake region. The mean flow field including velocity profiles and the dominant frequency of flow oscillation that was from the simulations discussed earlier were compared with the experimental data observed by Wang et al. (2004; 2006). Based on these comparisons it was found that the v2-f model is most accurate for the URANS simulation; moreover, the k-ω model is also acceptable. However, the k-ε model was found to be unsuitable in this case. Therefore, v2-f model is proved to be an excellent choice for the analysis of flow with massive separation. Therefore, it is expected to be used in future by studies aiming to control the flow separation.

AFM Study on Surface Film Formation on a Graphite Negative Electrode in a $LiPF_6$-based Non-Aqueous Solution (AFM을 이용한 $LiPF_6$를 주성분으로 하는 비수용액중에서의 흑연 음극 표면에 형성되는 피막에 관한 연구)

  • Jeong, Soon-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1313-1318
    • /
    • 2006
  • The mechanism fur the surface film formation was studied by in situ Atomic Force Microscopy (AFM) observation of a highly oriented pyrolytic graphite (HOPG) basal plane surface during cyclic voltammetry at a slow scan-rate of 0.5 mV $s^{-1}$ in 1 moi $dm^{-3}$ (M) $LiPF_6$ dissolved in a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC). Decomposition of the electrolyte solution began at a potential around 2.15 V vs. $Li^+$/Li on step edges. In the potential range 0.95-0.8 V vs. $Li^+$/Li, flat areas (hill-like structures) and large swelling appeared on the surface. It is considered that these two features were formed by the intercalation of solvated lithium ions and their decomposition beneath the surface, respectively. At potentials more negative than 0.80 V vs. $Li^+$/Li, particle-like precipitates appeared on the basal plane surface. After the first cycle, the thickness of the precipitate layer was 30 nm. The precipitates were considered to be decomposition of the lithium salt ($LiPF_6$) and solvent molecules (EC and DEC), and to have an important role in suppressing further solvent decomposition on the basal plane.

  • PDF

A Study on Design Automation of Cooling Channels in Hot Form Press Die Based on CATIA CAD System (CATIA CAD 시스템 기반 핫폼금형의 냉각수로 설계 자동화에 관한 연구)

  • Kim, Gang-Yeon;Park, Si-Hwan;Kim, Sang-Kwon;Park, Doo-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.147-154
    • /
    • 2018
  • This paper focuses on the development of a support system that can rapidly generate the design data of a hot-form die with cooling channels, commonly known as hot stamping technology. We propose a new process for designing hot-form dies based on our (automated) system, whose main features are derived from the analysis of the design requirements and design process in the current industry. Our design support system consists of two modules, which allow for the generation of a 3D geometry model and its 2D drawings. The module for 3D modeling automation is implemented as a type of CATIA template model based on CATIA V5 Knowledgeware. This module automatically creates a 3D model of a hot-form die, including the cooling channels, that depends on the shape of the forming surface and the number of STEELs (subsets of die product) and cooling channels. It also allows for both the editing of the positions and orientations of the cooling channels and testing for the purpose of satisfying the constraints on the distance between the forming surface and cooling channels. Another module for the auto-generation of the 2D drawings is being developed as a plug-in using CAA (CATIA SDK) and Visual C++. Our system was evaluated using the S/W test based on a user defined scenario. As a result, it was shown that it can generate a 3D model of a hot form die and its 2D drawings with hole tables about 29 times faster than the conventional manual method without any design errors.

Exact Solutions for Vibration and Buckling of Rectangular Plates Loaded at Two Simply-Supported Opposite Edges by In-Plane Moments, Free along the Other Two Edges (면내(面內) 모멘트를 받는 단순지지된 두 모서리와 자유경계인 나머지 두 모서리를 갖는 직사각형 판의 진동과 좌굴의 엄밀해)

  • Shim, Hyun-Ju;Woo, Ha-Young;Kang, Jae-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.81-92
    • /
    • 2006
  • This paper presents exact solutions for the free vibrations and buckling of rectangular plates having two opposite, simply supported edges subjected to linearly varying normal stresses causing pure in-plane moments, the other two edges being free. Assuming displacement functions which are sinusoidal in the direction of loading (x), the simply supported edge conditions are satisfied exactly. With this the differential equation of motion for the plate is reduced to an ordinary one having variable coefficients (in y). This equation is solved exactly by assuming power series in y and obtaining its proper coefficients (the method of Frobenius). Applying the free edge boundary conditions at y=0, b yields a fourth order characteristic determinant for the critical buckling moments and vibration frequencies. Convergence of the series is studied carefully. Numerical results are obtained for the critical buckling moments and some of their associated mode shapes. Comparisons are made with known results from less accurate one-dimensional beam theory. Free vibration frequency and mode shape results are also presented. Because the buckling and frequency parameters depend upon Poisson's ratio ( V ), results are shown for $0{\leq}v{\leq}0.5$, valid for isotropic materials.

  • PDF

중성빔 식각과 중성빔 원자층 식각기술을 이용한 TiN/HfO2 layer gate stack structure의 저 손상 식각공정 개발

  • Yeon, Je-Gwan;Im, Ung-Seon;Park, Jae-Beom;Kim, Lee-Yeon;Gang, Se-Gu;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.406-406
    • /
    • 2010
  • 일반적으로, 나노스케일의 MOS 소자에서는 게이트 절연체 두께가 감소함에 따라 tunneling effect의 증가로 인해 PID (plasma induced damage)로 인한 소자 특성 저하 현상을 감소하는 추세로 알려져 있다. 하지만 요즘 많이 사용되고 있는 high-k 게이트 절연체의 경우에는 오히려 더 많은 charge들이 trapping 되면서 PID가 오히려 더 심각해지는 현상이 나타나고 있다. 이러한 high-k 게이트 식각 시 현재는 주로 Hf-based wet etch나 dry etch가 사용되고 있지만 gate edge 영역에서 high-k 게이트 절연체의 undercut 현상이나 PID에 의한 소자특성 저하가 보고되고 있다. 본 연구에서는 이에 차세대 MOS 소자의 gate stack 구조중 issue화 되고 있는 metal gate 층과 gate dielectric 층의 식각공정에 각각 중성빔 식각과 중성빔 원자층 식각을 적용하여 전기적 손상 없이 원자레벨의 정확한 식각 조절을 해줄 수 있는 새로운 two step 식각 공정에 대한 연구를 진행하였다. 먼저 TiN metal gate 층의 식각을 위해 HBr과 $Cl_2$ 혼합가스를 사용한 중성빔 식각기술을 적용하여 100 eV 이하의 에너지 조건에서 하부층인 $HfO_2$와 거의 무한대의 식각 선택비를 얻었다. 하지만 100 eV 조건에서는 낮은 에너지에 의한 빔 스케터링으로 실제 패턴 식각시 etch foot이 발생되는 현상이 관찰되었으며, 이를 해결하기 위하여 먼저 높은 에너지로 식각을 진행하고 $HfO_2$와의 계면 근처에서 100 eV로 식각을 해주는 two step 방법을 사용하였다. 그 결과 anistropic 하고 하부층에 etch stop된 식각 형상을 관찰할 수 있었다. 다음으로 3.5nm의 매우 얇은 $HfO_2$ gate dielectric 층의 정확한 식각 깊이 조절을 위해 $BCl_3$와 Ar 가스를 이용한 중성빔 원자층 식각기술을 적용하여 $1.2\;{\AA}$/cycle의 단일막 식각 조건을 확립하고 약 30 cycle 공정시 3.5nm 두께의 $HfO_2$ 층이 완벽히 제거됨을 관찰할 수 있었다. 뿐만 아니라, vertical 한 식각 형상 및 향상된 표면 roughness를 transmission electron microscope(TEM)과 atomic force microscope (AFM)으로 관찰할 수 있었다. 이러한 중성빔 식각과 중성빔 원자층 식각기술이 결합된 새로운 gate recess 공정을 실제 MOSFET 소자에 적용하여 기존 식각 방법으로 제작된 소자 결과를 비교해 본 결과 gate leakage current가 약 one order 정도 개선되었음을 확인할 수 있었다.

  • PDF

A Study on the igniter using resonance tube (공명관을 이용한 점화기 연구)

  • Lee, Jung-Min;Kwon, Min-Chan;Shin, Dong-Sun;Semenov, V.V.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.112-117
    • /
    • 2004
  • This work is on numerical and experimental studies on the new type igniter using aerodynamic energy. The aerodynamic igniter consists of a nozzle and a resonance tube. The supersonic jet from a nozzle coming into the resonance tube generates pressure oscillation between the nozzle and the resonator. This oscillation changes the kinetic energy to thermal energy in the resonator under a certain condition. In this study, sonic and supersonic nozzles were tested in two different resonators, results has been compared. And geometrical optimum values of a supersonic nozzle has been suggested to reduce aerodynamic loss and friction in the expanded surface of the nozzle.

The AC, DC Dielectric Breakdown Characteristics according to Dielectric Thickness and Inner Electrode Pattern of High Voltage Multilayer Ceramic Capacitor (고압 적층 칩 캐패시터의 유전체 두께 및 내부전극 형상에 따른 AC, DC 절연 파괴 특성)

  • Yoon, Jung-Rag;Kim, Min-Kee;Lee, Seog-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1118-1123
    • /
    • 2008
  • High voltage multilayer ceramic capacitors (MLCCs) are classified into two classes-those for temperature compensation (class I) and high dielectric constant materials (class II). We manufactured high voltage MLCC with temperature coefficient characteristics of C0G and X7R and studied the characteristics of electric properties. Also we studied the characteristics of dielectric breakdown voltage (V) as the variation of thickness in the green sheet and how to pattern the internal electrodes. The dielectric breakdown by electric field was caused by defects in the dielectric materials and dielectric/electrode interface, so the dielectric thickness increased, the withstanding voltage per unit (E) thickness decreased. To overcome this problem, we selected the special design like as floating electrode and this design affected the increasing breakdown voltage(V) and realized the constant withstanding voltage per unit thickness(E). From these results, high voltage application of MLCCs can be expanded and the rated voltage can also be develop.

Fuel Concentration and Flame Temperature Distribution in Model Gas Turbine Combustor with Various Spray Angles (모형가스터빈 연소기에서 분무각 변화에 따른 연료농도 및 화염온도 분포)

  • Hwang, Jin-Seok;Byun, Yong-Woo;Seong, Hong-Gye;Koo, Ja-Ye;Kang, Jeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.1011-1016
    • /
    • 2008
  • Jet-A spray and combustion were numerically analyzed in annular type combustor model using KIVA3V. The combustor geometry have 6 dilute holes. Swirl effect and thermal NO were considered in this investigation to analyze mixing and combustion characteristics. Fuel vapor, flame temperature, NO generation were investigated for various spray angle. As increase of spray angle, Jet-A vapor appeared uniformly in primary zone and evaporation rate was increased. Mixing between fuel vapor and ambient gas was enhanced as increase of spray angle. As a result, high temperature region appeared widely and thermal NO generation rate was increased.

STUDY ON SAFETY OF SPIRAL INSULATING & FLEXIBLE JUMPER PROTECTOR COVER (소용돌이형 점퍼선방호관의 안전성에 관한 연구)

  • Ji, Yong-Heon;Choi, Myeong-Ho;Lee, Jae-Young;Kim, Dong-Sik;Kwak, Sang-Young;Kim, Young-Chan;Kim, Nam-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.04b
    • /
    • pp.211-213
    • /
    • 2008
  • 배전선로는 항상 각종 공작물과 아주 가까운 상태에서 존재하고 있어 배전선로 근접 작업 시 전력선에 근접으로 인한 섬락 또는 접촉으로 작업원이 감전 재해를 입을 수 있으며 또는 비, 바람, 조류 등에 의한 이물 접촉으로 설비 고장을 유발 시킬 수 있다. 이러한 감전재해 및 설비고장을 예방하기 위하여 22.9kV-y 전력선의 직선부분에 사용할 수 있는 직선형 방호관을 개발하여 건설현장 주변의 전력선에 방호조치 함으로서 전력선 근접 작업 시 작업종사자의 안전 확보에 이바지함은 물론 정전사고방지에도 크게 기여하여 왔다. 그러나 22.9kV-y 배전선로의 점퍼선부분과 변압기의 인상선 등 곡선으로 되었거나 구불구불한 형상으로 된 부위는 직선형 방호관으로는 방호조치가 불가능하여 산업안전보건법이 정한 산업안전기준에 관한 규칙 제327조 제2호에 의한 방호조치를 취하지 않고 근접작업이 진행되어 감전재해와 정전사고가 발생되어 왔었다. 한전에서 협력업체와 공동으로 연구개발한 소용돌이형 점퍼선방호관을 그동안 방호조치를 취하지 못한 점퍼선이나 구불구불한 전력선부위에 방호조치를 함으로서 감전재해의 예방과 정전사고 발생을 획기적으로 감소시킬 것으로 기대된다.

  • PDF

Performance Analysis of SITVC System with Various Secondary Injection Conditions (이차분사노즐 작동 조건 변화에 따른 SITVC 성능해석)

  • Bae, Ji-Yeul;Song, Ji-Woon;Kim, Tae-Hwan;Cho, Hyung-Hee;Bae, Ju-Chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.116-121
    • /
    • 2011
  • Performance of Secondary Injection Thrust Vector Control system is investigated under various secondary injection operating conditions. 3-dimensional converging-diverging nozzle having 8 secondary injection nozzles is used in this numerical study. Total pressure of flow inside the nozzle is about 70bars, and total temperature set to 300K for cold flow simulation. Effect of secondary injection flow rate and injection nozzle configuration is considered in this research. Simulation is conducted with commercial CFD code Ansys Fluent v13. Spalart-Allmaras(1-equation)model is used for turbulence modeling with AUSM+ scheme. Various performance factors as Axial thrust, side force, system specific impulse ratio are considered and explained for system performance evaluation.

  • PDF