DOI QR코드

DOI QR Code

The Comparison of Various Turbulence Models of the Flow around a Wall Mounted Square Cylinder

벽면에 부착된 사각 실린더 주변 유동에 대한 난류모델 비교연구

  • Bae, Jun-Young (Department of Smart Vehicle, DongJu College) ;
  • Song, Gi-Su (Ship and Offshore Performance Research Center, Samsung Heavy Industries Co. Ltd.)
  • 배준영 (동주대학교 스마트자동차과) ;
  • 송지수 (삼성중공업 조선해양연구소)
  • Received : 2020.04.20
  • Accepted : 2020.06.26
  • Published : 2020.06.30

Abstract

The flow past a wall mounted square cylinder, a typical and basic shape of building, bridge or offshore structure, was simulated using URANS computation through adoption of three turbulence models, namely, the k-ε model, k-ω model, and the v2-f model. It is well known that this flow is naturally unstable due to the Karman vortex shedding and exhibits a complex flow structure in the wake region. The mean flow field including velocity profiles and the dominant frequency of flow oscillation that was from the simulations discussed earlier were compared with the experimental data observed by Wang et al. (2004; 2006). Based on these comparisons it was found that the v2-f model is most accurate for the URANS simulation; moreover, the k-ω model is also acceptable. However, the k-ε model was found to be unsuitable in this case. Therefore, v2-f model is proved to be an excellent choice for the analysis of flow with massive separation. Therefore, it is expected to be used in future by studies aiming to control the flow separation.

본 논문에서는 건물, 교량 및 해양구조물에 많이 적용되는 기본적인 형상인 벽면에 부착되어 있는 사각실린더 주변의 유동에 대해, 3개의 난류모델(v2-f 모델, k-ω 모델, k-ε 모델)을 적용하여 URANS 수치해석을 각각 수행하고, 그 결과를 비교하였다. 이 유동은 물체의 모서리에서 발생하는 칼만 와(karman vortex) 때문에 본질적으로 강한 비정상성을 가지고 있으며, 물체의 후류 영역에서도 매우 복잡한 유동구조를 가지고 있다고 알려져 있다. 3개의 난류모델이 적용된 수치해석으로부터 예측되는 평균 유동장과 지배적인 유동의 주파수를 Wang et al.(2004; 2006)의 실험결과와 비교하였다. 비교 결과, v2-f 모델이 적용된 URANS 결과가 실험결과와 가장 유사한 결과를 보여주었고, k-ω 모델도 우수한 결과를 보인 반면, k-ε 모델은 본 대상 유동에 적용하기에 부족함을 확인하였다. 따라서 강한 박리가 존재하는 유동의 해석 시에는 v2-f 모델은 좋은 선택이다. 그리고 유동의 박리 제어를 위한 연구에 활용될 것으로 기대된다.

Keywords

References

  1. Bardina, J. E., P. G. Huang, and T. J. Coakley(1997), Turbulence modeling validation, testing, and development, NASA TM-110446.
  2. Chang, K. S., G. Constantinescu, and S. O. Park(2007), Assessment of predictive capabilities of detached eddy simulation to simulate flow and mass transport past open cavities, J. Fluids Eng., Vol. 129, pp. 1372-1383. https://doi.org/10.1115/1.2786529
  3. Constantinescu, G. and K. Squires(2004), Numerical investigations of flow over a sphere in the subcritical and supercritical regimes, Phys. Fluids., Vol. 16, No. 5, pp. 1449-1466. https://doi.org/10.1063/1.1688325
  4. Durbin, P. A.(1995), Separated flow computations with the $k-{\varepsilon}-v^2$ model, AIAA J., Vol. 33, No. 4, pp. 659-664. https://doi.org/10.2514/3.12628
  5. Durbin, P. A.(1996), On the k-${\varepsilon}$ stagnation point anomaly, Int. J. Heat & Fluid F., Vol. 17, pp. 89-90. https://doi.org/10.1016/0142-727X(95)00073-Y
  6. Durbin, P. A. and B. A. Petterson Reif(2001), Statistical theory and modeling for turbulent flows. John Wiley & Sons, New York, NY 10158-0012, USA.
  7. Elhadi, E. E., X. Lei, and K. Wu(2002), Numerical simulation of 2D separated flow using two different turbulence models, Pakistan Jou. Sci. Pub., Vol. 2, No. 12, pp. 1057-1062.
  8. Iaccarino, G., A. Ooi, P. A. Durbin, and M. Behnia(2003), Reynolds averaged simulation of unsteady separated flow, Int. J. Heat & Fluid F., Vol. 24, pp. 174-156.
  9. Jones, W. P. and B. E. Launder(1972), The prediction of laminarization with a two-equation model of turbulence, Int. J. Heat Transfer, Vol. 15, pp. 301-314. https://doi.org/10.1016/0017-9310(72)90076-2
  10. Kawamura, T., M. Hiwada, T. Hibino, I. Mabuch, and M. Kumada(1984), Flow around a finite circular cylinder on a flat plate, Bull. of JSME., Vol. 27, pp. 2142-2151. https://doi.org/10.1299/jsme1958.27.2142
  11. Kato, M. and B. E. Launder(1993), The modeling of turbulent flow around stationary and vibrating square cylinders, In 9th Symp. on Turbulent Shear Flows, Kyoto, Japan, Aug.
  12. Launder, B. E. and B. I. Sharma(1974), Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc, Lett. Heat & Mass T., Vol. 1, No. 2, pp. 131-138. https://doi.org/10.1016/0735-1933(74)90024-4
  13. Launder, B. E. and J. L. Spalding(1972), Mathematical models of turbulence, Academic Press, New York, USA.
  14. Lee, S. S.(1997), Unsteady aerodynamics force prediction on a square cylinder using k-${\varepsilon}$ turbulence model, J. Wind Eng. Ind. Aerodyn., Vol. 67&68, pp. 79-90. https://doi.org/10.1016/S0167-6105(97)00064-0
  15. Manceau, R., S. Parneix, and D. Laurence(2000), Turbulent heat transfer predictions using the $v^2$-f model on unstructured meshes, Int. J. Heat & Fluid F., Vol. 21, pp. 320-328. https://doi.org/10.1016/S0142-727X(00)00016-3
  16. Menter, F. R., M. Kuntz, and R. Bender(2003), A scale-adaptive simulation model for turbulent flow predictions, AIAA paper 2003-0767.
  17. Mochida A., Y. Tominaga S., Murakami, R. Yoshie, T. Ishihara, and R. Ooka(2002), Comparison of various k-e models and DSM applied to flow around a high-rise building - report on AIJ cooperative project for CFD prediction of wind environment, Wind Struct., Vol. 5, No. 2, pp. 227-244. https://doi.org/10.12989/was.2002.5.2_3_4.227
  18. Murakami, S.(1998), Overview of turbulence models applied in CWE-1997, J. Wind Eng. Ind. Aerodyn., Vol. 74&76, pp. 1-24. https://doi.org/10.1016/S0167-6105(98)00004-X
  19. Murakami, S., A. Mochida, R. Ooka, S. Kato, and S. Iizuka (1996), Numerical Prediction of Flow around Building with Various Turbulence Models: Comparison of k-${\varepsilon}$ EVM, ASM, DSM and LES with Wind Tunnel Tests, ASHRAE Trans., Vol. 102, pp. 741-753.
  20. Okamoto, T. and M. Yagita(1973), The experimental investigation on the flow past a circular cylinder of finite length placed normal to the plane surface in a uniform stream, Bull. JSME., Vol. 16, pp. 805-814. https://doi.org/10.1299/jsme1958.16.805
  21. Rahman, M. M. and T. Siikonen(2007), A simplified v2-f model for near-wall turbulence, Int. J. Numer. Meth. Fluids., Vol. 54, pp. 1387-1406. https://doi.org/10.1002/fld.1411
  22. Song, C. C. S. and J. He(1993), Computation of wind flow around a tall building and the large scale vortex structure, J. Wind Eng. Ind. Aerodyn., Vol. 46&47, pp. 219-228. https://doi.org/10.1016/0167-6105(93)90287-X
  23. Stathopoulos, T.(1997), Computational wind engineering: Past achievements and future challenges, J. Wind Eng. Ind. Aerodyn., Vol. 67&68, pp. 509-532. https://doi.org/10.1016/S0167-6105(97)00097-4
  24. Strahle, W. C.(1985), Stagnation point flows with freestream turbulence-the matching condition, AIAA J., Vol. 23, No. 11, pp. 1822-1824. https://doi.org/10.2514/3.9176
  25. Sumner, D., J. L. Heseltine, and O. J. P. Dansereau(2004), Vortex shedding from a finite circular cylinder of small aspect ratio, Proceedings of the Canadian Society for Mechanical Engineering Forum 2004 - CSME Forum 2004, London, Canada, June.
  26. Tucker, P. G.(2001), Computation of unsteady internal flows: Fundamental methods with case studies, Kluwer Academic Publishers, Norwell, Massachusetts, USA.
  27. Wang, H. F., Y. Zhou, C. K. Chan, and K. S. Lam(2006), Effect of Initial Conditions on Interaction between a Boundary Layer and a Wall-Mounted Finite-Length-Cylinder Wake, Phys. Fluids., Vol. 18, No. 6, pp. 1-12.
  28. Wang, H. F., Y. Zhou, C. K. Chan, W. O. Wong, and K. S. Lam(2004), Flow Structure around a Finite-Length Square Prism, Proceedings of the 15th Australasian Fluid Mechanics Conference, Sydney, Australia, Dec.
  29. Wilcox, D. C.(1993), Turbulence modeling for CFD, DCW Industries, Inc., 5354 Palm Drive, La Canada, Calif., USA.