• Title/Summary/Keyword: User Clustering

Search Result 377, Processing Time 0.036 seconds

Face Detection for Automatic Avatar Creation by using Deformable Template and GA

  • Park, Tae-Young;Lee, Ja-Yong;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1534-1538
    • /
    • 2005
  • In this paper, we propose a method to detect contours of a face, eyes, and a mouth of a person in the color image in order to make an avatar automatically. First, we use the HSI color model to exclude the effect of various light conditions, and find skin regions in the input image by using the skin color defined on HS-plane. And then, we use deformable templates and genetic algorithm (GA) to detect contours of a face, eyes, and a mouth. Deformable templates consist of B-spline curves and control point vectors. Those represent various shapes of a face, eyes and a mouth. GA is a very useful search algorithm based on the principals of natural selection and genetics. Second, the avatar is automatically created by using GA-detected contours and Fuzzy C-Means clustering (FCM). FCM is used to reduce the number of face colors. In result, we could create avatars which look like handmade caricatures representing user's identity. Our approach differs from those generated by existing methods.

  • PDF

Research on Natural Language Processing Package using Open Source Software (오픈소스 소프트웨어를 활용한 자연어 처리 패키지 제작에 관한 연구)

  • Lee, Jong-Hwa;Lee, Hyun-Kyu
    • The Journal of Information Systems
    • /
    • v.25 no.4
    • /
    • pp.121-139
    • /
    • 2016
  • Purpose In this study, we propose the special purposed R package named ""new_Noun()" to process nonstandard texts appeared in various social networks. As the Big data is getting interested, R - analysis tool and open source software is also getting more attention in many fields. Design/methodology/approach With more than 9,000 R packages, R provides a user-friendly functions of a variety of data mining, social network analysis and simulation functions such as statistical analysis, classification, prediction, clustering and association analysis. Especially, "KoNLP" - natural language processing package for Korean language - has reduced the time and effort of many researchers. However, as the social data increases, the informal expressions of Hangeul (Korean character) such as emoticons, informal terms and symbols make the difficulties increase in natural language processing. Findings In this study, to solve the these difficulties, special algorithms that upgrade existing open source natural language processing package have been researched. By utilizing the "KoNLP" package and analyzing the main functions in noun extracting command, we developed a new integrated noun processing package "new_Noun()" function to extract nouns which improves more than 29.1% compared with existing package.

Smart Thermostat based on Machine Learning and Rule Engine

  • Tran, Quoc Bao Huy;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.155-165
    • /
    • 2020
  • In this paper, we propose a smart thermostat temperature set-point control method based on machine learning and rule engine, which controls thermostat's temperature set-point so that it can achieve energy savings as much as possible without sacrifice of occupants' comfort while users' preference usage pattern is respected. First, the proposed method periodically mines data about how user likes for heating (winter)/cooling (summer) his or her home by learning his or her usage pattern of setting temperature set-point of the thermostat during the past several weeks. Then, from this learning, the proposed method establishes a weekly schedule about temperature setting. Next, by referring to thermal comfort chart by ASHRAE, it makes rules about how to adjust temperature set-points as much as low (winter) or high (summer) while the newly adjusted temperature set-point satisfies thermal comfort zone for predicted humidity. In order to make rules work on time or events, we adopt rule engine so that it can achieve energy savings properly without sacrifice of occupants' comfort. Through experiments, it is shown that the proposed smart thermostat temperature set-point control method can achieve better energy savings while keeping human comfort compared to other conventional thermostat.

Global Healthcare Information System

  • Singh, Dhananjay;Lee, Hoon-Jae;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.365-368
    • /
    • 2008
  • This paper presents a new concept of IP-based wireless sensor networks and also introduces a routing protocol that is based on clustering for global healthcare information system. Low-power wireless personal area networks (LoWPANs) conform the standard by IEEE 802.15.4-2003 to IPv6 that makes 6lowpan. It characterized by low bit rate, low power, and low cost as well as protocol for wireless connections. The 6lowpan node with biomedical sensor devices fixed on the patient body area network that should be connected to the gateway in personal area network. Each 6lowpan nodes have IP-addresses that would be directly connected to the internet. With the help of IP-address service provider can recognize or analysis patient biomedical data from anywhere on globe by internet service provider equipments such as cell phone, PDA, note book. The system has been evaluated by technical verification, clinical test, user survey and current status of patient. We used NS-2.33 simulator for our prototype and also simulate the routing protocols. The result shows the performance of biomedical data packets in multi-hope routing as well as represents the topology of the networks.

  • PDF

Learning Tagging Ontology from Large Tagging Data (대규모 태깅 데이터를 이용한 태깅 온톨로지 학습)

  • Kang, Sin-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.157-162
    • /
    • 2008
  • This paper presents a learning method of tagging ontology using large tagging data such as a folksonomy, which stands for classification structure informally created by the people. There is no common agreement about the semantics of a tagging, and most social web sites internally use different methods to represent tagging information, obstructing interoperability between sites and the automated processing by software agents. To solve this problem, we need a tagging ontology, defined by analyzing intrinsic attributes of a tagging. Through several machine learning for tagging data, tag groups and similar user groups are extracted, and then used to learn the tagging ontology. A recommender system adopting the tagging ontology is also suggested as an applying field.

User Satisfaction Models Based on a Fuzzy Rule-Based Modeling Approach (퍼지 규칙 기반 모델링 기법을 이용한 감성 만족도 모델 개발)

  • Park, Jungchul;Han, Sung H.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.3
    • /
    • pp.331-343
    • /
    • 2002
  • This paper proposes a fuzzy rule-based model as a means to build usability models between emotional satisfaction and design variables of consumer products. Based on a subtractive clustering algorithm, this model obtains partially overlapping rules from existing data and builds multiple local models each of which has a form of a linear regression equation. The best subset procedure and cross validation technique are used to select appropriate input variables. The proposed technique was applied to the modeling of luxuriousness, balance, and attractiveness of office chairs. For comparison, regression models were built on the same data in two different ways; one using only potentially important variables selected by the design experts, and the other using all the design variables available. The results showed that the fuzzy rule-based model had a great benefit in terms of the number of variables included in the model. They also turned out to be adequate for predicting the usability of a new product. Better yet, the information on the product classes and their satisfaction levels can be obtained by interpreting the rules. The models, when combined with the information from the regression models, are expected to help the designers gain valuable insights in designing a new product.

Implementation of data synchronization for local disks in Linux high availability system (리눅스 고가용 시스템에서 로컬 디스크 간 데이터 동기화 구현)

  • Park, seong-jong;Lee, cheol-hoo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.547-550
    • /
    • 2008
  • Recently, changes in the environment of user-centric internet service such as blog, UCC and IPTV and ubiquitous computing based on web service are needed to high availability system platform. High availability system is to provide safe service continuously even if system failure occurs in clustering system at the network. And it is necessary to synchronize data for reliable service in high availability system. In this paper, I implement DRBD(Disk Replicated Block Device) which is synchronization technique for data of local disks in high availability system.

  • PDF

Optimal EEG Locations for EEG Feature Extraction with Application to User's Intension using a Robust Neuro-Fuzzy System in BCI

  • Lee, Chang Young;Aliyu, Ibrahim;Lim, Chang Gyoon
    • Journal of Integrative Natural Science
    • /
    • v.11 no.4
    • /
    • pp.167-183
    • /
    • 2018
  • Electroencephalogram (EEG) recording provides a new way to support human-machine communication. It gives us an opportunity to analyze the neuro-dynamics of human cognition. Machine learning is a powerful for the EEG classification. In addition, machine learning can compensate for high variability of EEG when analyzing data in real time. However, the optimal EEG electrode location must be prioritized in order to extract the most relevant features from brain wave data. In this paper, we propose an intelligent system model for the extraction of EEG data by training the optimal electrode location of EEG in a specific problem. The proposed system is basically a fuzzy system and uses a neural network structurally. The fuzzy clustering method is used to determine the optimal number of fuzzy rules using the features extracted from the EEG data. The parameters and weight values found in the process of determining the number of rules determined here must be tuned for optimization in the learning process. Genetic algorithms are used to obtain optimized parameters. We present useful results by using optimal rule numbers and non - symmetric membership function using EEG data for four movements with the right arm through various experiments.

A Study on Improvement of the School Space through Socio-Spatial Network Analysis (사회-공간 네트워크 분석을 활용한 초등학교 공간계획방향에 관한 연구)

  • Jeon, Young-Hoon;Kim, Yoon-Young
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.5
    • /
    • pp.21-30
    • /
    • 2019
  • The purpose of this study is to present the direction of the new space plan by reflecting the opinions of the user (student) in the existing standardized elementary school space planning. The purpose of this study is to investigate the activities of elementary school students by using socio - spatial network analysis method and to propose the direction of new elementary school space planning through the results. We analyzed the results of each centrality by using the analysis of closeness analysis, betweeness analysis, girvan-newman clustering, and concor analysis. The results of this study are as follows. First, it should be planned to use the classroom and the special room as one area by utilizing the corridor. Second, it should be planned that the outdoor space and the indoor space are closely related to each other by utilizing the hall, the lobby and the classroom. Third, the school should create a small space where physical activity is possible in an indoor space of the school. In order to improve the standardized elementary school space, this study proposes a method to reflect the opinions of the users in the school planning stage.

Real-world multimodal lifelog dataset for human behavior study

  • Chung, Seungeun;Jeong, Chi Yoon;Lim, Jeong Mook;Lim, Jiyoun;Noh, Kyoung Ju;Kim, Gague;Jeong, Hyuntae
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.426-437
    • /
    • 2022
  • To understand the multilateral characteristics of human behavior and physiological markers related to physical, emotional, and environmental states, extensive lifelog data collection in a real-world environment is essential. Here, we propose a data collection method using multimodal mobile sensing and present a long-term dataset from 22 subjects and 616 days of experimental sessions. The dataset contains over 10 000 hours of data, including physiological, data such as photoplethysmography, electrodermal activity, and skin temperature in addition to the multivariate behavioral data. Furthermore, it consists of 10 372 user labels with emotional states and 590 days of sleep quality data. To demonstrate feasibility, human activity recognition was applied on the sensor data using a convolutional neural network-based deep learning model with 92.78% recognition accuracy. From the activity recognition result, we extracted the daily behavior pattern and discovered five representative models by applying spectral clustering. This demonstrates that the dataset contributed toward understanding human behavior using multimodal data accumulated throughout daily lives under natural conditions.