According to the KT telecommunication statistics, people stayed inside their houses on an average of 11.9 hours a day. As well as, according to NSC statistics in the united states, people regardless of age are injured for a variety of reasons in their houses. For purposes of this research, we have investigated an abnormal event detection algorithm to classify infrequently occurring behaviors as accidents, health emergencies, etc. in their daily lives. We propose a fusion method that combines three classification algorithms with vision pattern, audio pattern, and activity pattern to detect unusual user events. The vision pattern algorithm identifies people and objects based on video data collected through home CCTV. The audio and activity pattern algorithms classify user audio and activity behaviors using the data collected from built-in sensors on their smartphones in their houses. We evaluated the proposed individual pattern algorithm and fusion method based on multiple scenarios.
With the rapid development of digital media, there has been a huge change in a way of communication, a process of information diffusion and a role of traditional media. Not like mass media, social media enables users to generate and tap into the opinions of a larger world. From that reason, social media is impacting marketing strategies. However, still social media marketing researches just focus on case study, analysis of users motivation or analysis of power user's usage pattern. Word-of-mouth has always been important especially in marketing area. In social media, word-of-mouth depends on each user that's why this research focuses on individual user's activity in SNS. I defined 4 factors (produce, diffusion, network size, activity of network size enlarge) that are effect on activity and verified hypothesis by multiple regression analysis, hierarchical regression analysis and moderated multiple regression.
스마트폰의 보급과 온라인 소셜 네트워크 서비스의 발전으로 사용자들은 많은 콘텐츠를 생산하거나 서로 공유한다. 이로 인해 사용자는 자신이 원하지 않는 콘텐츠를 받아보거나 소비함으로써 많은 시간을 소요하게 된다. 이와 같은 문제를 해결하기 위해 소셜 네트워크 사용자에게 적합한 콘텐츠를 추천하기 위한 기법들이 활발하게 연구되고 있다. 본 논문에서는 온라인 소셜 네트워크 사용자에게 협업 필터링을 이용하여 적합한 콘텐츠를 추천하는 기법을 제안한다. 제안하는 기법은 추천의 정확성을 낮추는 사용자의 데이터를 제거하기 위해서 사용자 신뢰도를 고려한다. 사용자의 신뢰도는 온라인 소셜 네트워크의 사용자 행위를 분석해서 도출한다. 사용자의 신뢰도를 다양한 관점에서 평가하기 위해서 기존기법에서 사용하지 않았던 사용자 행위들을 수집해서 사용한다. 다양한 성능평가를 통해 제안하는 기법이 기존 기법보다 우수함을 보인다.
기존 사용자의 행동 패턴을 인식하는 연구들이 몇 개의 특정 행동을 설정, 사용자 독립적인 인식 결과를 낼 수 있는 특징 추출 방법들을 제안해왔다. 그러나 이러한 연구는 실험실 차원의 결과에 그치고 사용자 독립적인 일반성 획득이나 특정 행동만을 인식 대상으로 삼음으로써 구현상에서 많은 어려움을 초래한다. 이러한 문제점을 개선하고자 본 논문에서는 사용자의 일정 기간 동안의 행동 패턴에 대해 반복성과 지속성을 기준으로 새로 입력되는 행동패턴의 정상/비정상 여부를 검출한다. 기존 연구에서 사용한 교사학습 방법이 아닌 비교사학습 방법을 적용, 일정 기간 동안 수집된 데이터를 클러스터링하여 반복성을 평가하는 기준으로 삼는다. 실험을 통해 반복적으로 발생하는 데이터를 근거로 하여 처음 나타난 행동을 비정상 행동으로 검출할 수 있음을 입증했다.
Mobile devices are becoming increasingly sophisticated and the latest generation of smartphones now incorporates many diverse and powerful sensors. These sensors include acceleration sensor, magnetic field sensor, light sensor, proximity sensor, gyroscope sensor, pressure sensor, rotation vector sensor, gravity sensor and orientation sensor. The availability of these sensors in mass-marketed communication devices creates exciting new opportunities for data mining and data mining applications. In this paper, we describe and evaluate a system that uses phone-based accelerometers to perform activity recognition, a task which involves identifying the physical activity that a user is performing. To implement our system, we collected labeled accelerometer data from 10 users as they performed daily activities such as "phone detached", "idle", "walking", "running", and "jumping", and then aggregated this time series data into examples that summarize the user activity 5-minute intervals. We then used the resulting training data to induce a predictive model for activity recognition. This work is significant because the activity recognition model permits us to gain useful knowledge about the habits of millions of users-just by having them carry cell phones in their pockets.
Purpose: The present study was designed to examine the casual relationships among performance and arts information service quality, initial trust, user satisfaction, reuse intention and prosumer activity in social network service(SNS). Also, we intended to explore significant factors on use performance of SNS through causal model analysis in the viewpoint of total effect. Methods: As a survey tool, questionnaire has obtained validity and reliability through literature survey, exploratory survey and pretest and sample 403 was selected. For statistical treatment of pretest and main analysis, SPSS18.0 and AMOS18.0 were employed and structural equation model was employed as analysis method. Results: Result of this study shows as follows. Two factors (precision and reciprocal action) have an effect on user satisfaction, initial trust, reuse intention and prosumer activity. We found that with an importance of initial trust, prosumer activity can be a useful and significant factor in causal relationship of SNS. Conclusion: The present study shows that two factors(precision and reciprocal action) in via of initial trust, were important factors that related companies have to emphasize to raise performance, And also we confirmed new factor 'prosumer activity' through this study. However, the present study has some limitations to be studied in the future.
유비쿼터스 컴퓨팅 환경에서 사용자에게 최적의 서비스를 제공하기 위해서는 객체 그리고 사용자의 행위와 밀접한 연관이 있는 시공간 정보를 고려하는 것이 중요하다. 이를 위해 이 논문에서는 사용자의 상황을 고려하기 위한 시공간 온톨로지를 설계하고 이를 이용하여 사용자의 행동 및 서비스 패턴을 능동적으로 마이닝할 수 있는 시스템 구조를 제안한다. 제안된 시스템은 사용자의 시간에 따른 위치 및 객체와의 연관성을 고려하여 사용자의 행동과 서비스 패턴을 지능적으로 마이닝 하기 위한 프레임워크이고 트리거 시스템을 기반으로 한다.
Various personalized services are provided based on user context these days, and IoT(Internet of Things) devices provides effective ways to collect user context. For example, user's activity such as walking steps, calories, and sleeping hours can be collected using smart activity tracker. Smart scale can sense change of user's weight or body fat percentage. However, these services are independent to each other and not easy to make them collaborate. Many standard bodies are working on the documents for this issue, but due to diversity of IoT use case scenarios, it seems that multiple IoT technologies co-exist for the time being. This paper propose a framework to collaborate heterogeneous IoT services. The proposed framework provides methods to build application for heterogeneous IoT devices and user context management in more intuitive way using HTTP. To improve compatibility and usability, gathered user contexts are based on MPEG-UD. Implementation of framework and service with real-world devices are also presented.
Recently, studies that interact with human and things through motion recognition are increasing due to the expansion of IoT(Internet of Things). This paper proposed the system that recognizes the user's logical activity in home environment by attaching some sensors to various objects. We employ Arduino sensors and appreciate the logical activity by using the physical activitymodel that we processed in the previous researches. In this System, we can cognize the activities such as watching TV, listening music, talking, eating, cooking, sleeping and using computer. After we produce experimental data through setting virtual scenario, then the average result of recognition rate was 95% but depending on experiment sensor situation and physical activity errors the consequence could be changed. To provide the recognized results to user, we visualized diverse graphs.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권4호
/
pp.1887-1898
/
2018
In this paper, a method to classify insider threat activity is introduced. The internal threats help detecting anomalous activity in the procedure performed by the user in an organization. When an anomalous value deviating from the overall behavior is displayed, we consider it as an inside threat for classification as an inside intimidator. To solve the situation, Markov Chain Model is employed. The Markov Chain Model shows the next state value through an arbitrary variable affected by the previous event. Similarly, the current activity can also be predicted based on the previous activity for the insider threat activity. A method was studied where the change items for such state are defined by a transition probability, and classified as detection of anomaly of the inside threat through values for a probability variable. We use the properties of the Markov chains to list the behavior of the user over time and to classify which state they belong to. Sequential data sets were generated according to the influence of n occurrences of Markov attribute and classified by machine learning algorithm. In the experiment, only 15% of the Cert: insider threat dataset was applied, and the result was 97% accuracy except for NaiveBayes. As a result of our research, it was confirmed that the Markov Chain Model can classify insider threats and can be fully utilized for user behavior classification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.