DOI QR코드

DOI QR Code

An Active Mining Framework Design using Spatial-Temporal Ontology

시공간 온톨로지를 이용한 능동 마이닝 프레임워크 설계

  • 황정희 (남서울대학교 컴퓨터학과) ;
  • 노시춘 (남서울대학교 컴퓨터학과)
  • Received : 2010.06.19
  • Accepted : 2010.09.08
  • Published : 2010.09.30

Abstract

In order to supply suitable services to users in ubiquitous computing environments, it is important to consider both location and time information which is related to all object and user's activity. To do this, in this paper, we design a spatial-temporal ontology considering user context and propose a system architecture for active mining user activity and service pattern. The proposed system is a framework for active mining user activity and service pattern by considering the relation between user context and object based on trigger system.

유비쿼터스 컴퓨팅 환경에서 사용자에게 최적의 서비스를 제공하기 위해서는 객체 그리고 사용자의 행위와 밀접한 연관이 있는 시공간 정보를 고려하는 것이 중요하다. 이를 위해 이 논문에서는 사용자의 상황을 고려하기 위한 시공간 온톨로지를 설계하고 이를 이용하여 사용자의 행동 및 서비스 패턴을 능동적으로 마이닝할 수 있는 시스템 구조를 제안한다. 제안된 시스템은 사용자의 시간에 따른 위치 및 객체와의 연관성을 고려하여 사용자의 행동과 서비스 패턴을 지능적으로 마이닝 하기 위한 프레임워크이고 트리거 시스템을 기반으로 한다.

Keywords

References

  1. C. Harry, F. Tim, "An Ontology for Context-aware Pervasive Computing Environments," Workshop Ontologies and Distributed Systems, IJCAI Press, 2003.
  2. M. Khedr, A. Karmouch, "Negotiating Context Information in Context-aware Systems," IEEE Intelligent Systems, 2004.
  3. M. Strimpakou, et al., "Context Modeling and Management in Ambient-Aware Pervasive Environments," Workshop on Location and Context-aware, 2005.
  4. M. A. Strimpakou, L. G. Roussaki, M. E. Anagnostou, "A Context Ontology for Pervasive Prevision," National Technical University of Athens, 2004.
  5. C. H. Lee, S. Helal, "Context Attributes:An Approach to Enable Context-Awareness for Service Discovery," Symposium on Applications and the Internet, pp.22-30, 2003.
  6. S. Maffioletti, S. K. Mostefaoui, B. Hirsbrunner, "Automatic Resource and Service Management for Ubiquitous Computing Environments," The Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, 2004.
  7. L. Brisson, M. Collard, "An Ontology Driven Data Mining Process," The Tenth International Conference on Enterprise Information Systems, 2008.
  8. A. Bellandi, B. Furletti, V. Grossi, A. Romei, "Ontology-driven Association Rules Extraction: a Case of Study, The International Workshop on Contexts and Ontologies: Representation and Reasoning, 2007.
  9. W. Beer, et. al. "Modeling Context-Aware Behavior by Interpreted ECA Rules," Mobile and Ubiquitous Computing, LNCS, 2004.
  10. T. Abraham. Knowledge Discovery in Spatio-Temporal Databases, School of Computer and Information Science, University of South of Australia, Ph. D dissertation, 1999.
  11. J. F. Allen, H. A. Kautz "A Model of Native Temporal Reasoning," In Formal Theories of The Commonsense World, 1985.
  12. http://www.w3.org/2004/OWL
  13. http://protege.stanford.edu
  14. J. Pei, J. Han, et. al, "PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth," The International Conference on Data Engineering, 2001.
  15. R. Agrawal, R. Srikant, "Fast Algorithms for Mining Association Rules," The 20th International Conference on Very Large Data Bases, 1994.